姓名 Name:	學號 Student ID #:
Quiz 1	MATH 104 / GEAI 1209: Linear Algebra II

$$A = \begin{bmatrix} -2 & 2 & 1 \\ -1 & 0 & 0 \\ 1 & 1 & -2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -3 & 1 \\ -2 & -3 & 2 \end{bmatrix}.$$

Suppose $f: \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

check	code

姓名 Name:	學號 Student ID #:
Quiz 1	MATH 104 / GEAI 1209: Linear Algebra II

$$A = \begin{bmatrix} 2 & 2 & -2 \\ -2 & 2 & 1 \\ 1 & -1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & -2 \\ -1 & 1 & 2 \\ -1 & 2 & 3 \end{bmatrix}.$$

Suppose $f: \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

check	code	

姓名 Name:	學號 Student ID #:
Quiz 1	MATH 104 / GEAI 1209: Linear Algebra II

$$A = \begin{bmatrix} -1 & 0 & -1 \\ 1 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & -3 \end{bmatrix}.$$

Suppose $f: \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

check	code

姓名 Name:	學號 Student ID #:
Quiz 1	MATH 104 / GEAI 1209: Linear Algebra II

$$A = \begin{bmatrix} -1 & -2 & -1 \\ -2 & -2 & 0 \\ 2 & 2 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & -1 \\ -2 & 1 & 0 \\ -5 & 2 & 2 \end{bmatrix}.$$

Suppose $f: \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

check	code

姓名 Name:	學號 Student ID #:
Quiz 1	MATH 104 / GEAI 1209: Linear Algebra II

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ -2 & 0 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Suppose $f: \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

check	code

姓名 Name:	學號 Student ID #:
Quiz 1	MATH 104 / GEAI 1209: Linear Algebra II

$$A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & -2 & 1 \\ 0 & 1 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}.$$

Suppose $f: \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

check	code

姓名 Name:	學號 Student ID #:
Quiz 1	MATH 104 / GEAI 1209: Linear Algebra II

Let
$$A = \begin{bmatrix} -1 & -2 & 1 \\ -2 & 0 & -1 \\ -2 & 0 & -2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & -2 & -2 \\ 2 & -3 & -4 \\ -4 & 7 & 9 \end{bmatrix}.$$

Suppose $f: \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

check	code

姓名 Name:	學號 Student ID #:
Quiz 1	MATH 104 / GEAI 1209: Linear Algebra II

$$A = \begin{bmatrix} -1 & 2 & -2 \\ 1 & -2 & -1 \\ 2 & -1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ -4 & -1 & 3 \end{bmatrix}.$$

Suppose $f: \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

check	code

姓名 Name:	學號 Student ID #:
Quiz 1	MATH 104 / GEAI 1209: Linear Algebra II

$$A = \begin{bmatrix} 0 & -1 & -2 \\ 2 & -2 & 0 \\ 2 & -2 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & -2 & -1 \\ 0 & 1 & 1 \\ 1 & -4 & -2 \end{bmatrix}.$$

Suppose $f: \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

check	code

姓名 Name: _	學號 Student ID #:
Quiz 1	MATH 104 / GEAI 1209: Linear Algebra II

$$A = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 2 & 2 \\ 1 & -2 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 3 & -2 \\ 0 & 1 & 3 \end{bmatrix}.$$

Suppose $f: \mathbb{R}^3 \to \mathbb{R}^3$ is a homomorphism defined by $f(\mathbf{v}) = A\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$ and \mathcal{B} is a basis of \mathbb{R}^3 composed of the columns of B. Find $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$.

Check code = (sum of all entries of $\text{Rep}_{\mathcal{B},\mathcal{B}}(f)$) mod 10

Solution.

check	code	