Sample Questions 9

Let I_n be the $n \times n$ identity matrix. Let J_n be the $n \times n$ all-ones matrix. Also, **1** is the all-ones vector and **0** is the zero vector.

- 1. Let **A** be an $n \times n$ matrix. Show that det($-\mathbf{A}$) = $(-1)^n$ det(**A**). Furthermore, a matrix is called *skew-symmetric* if $\mathbf{A}^\top = -\mathbf{A}$. Show that an $n \times n$ skew-symmetric matrix is always singular when n is odd.
- 2. Suppose **A** is an $n \times n$ orthogonal matrix. That is $AA^{\top} = A^{\top}A = I_n$. Show that $|\det(A)| = 1$. Next, suppose **B** is a matrix whose rows v_1, \ldots, v_n are mutually orthogonal. Show that

$$|\det(\mathbf{B})| = |\mathbf{v}_1| \cdots |\mathbf{v}_2|.$$

(This is also the expected volume, the product of the length of each sides.)

3. Let R be the rectangle defined by $1 \le x \le 4$ and $2 \le y \le 4$. Define a homomorphism $t : \mathbb{R}^2 \to \mathbb{R}^2$ by $t(\mathbf{v}) = \mathbf{A}\mathbf{v}$ with $\mathbf{A} = \begin{bmatrix} 5 & 2 \\ 3 & 4 \end{bmatrix}$. Draw the region $t(\mathsf{R})$ and compute its area.

4. Find

2	-1	0	0	0
-1	2	-1	0	0
0	-1	2	-1	0
0	0	-1	2	-1
0	0	0	-1	2
	2 -1 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

by Laplace expansion.

5. Suppose A is a matrix such that A1 = 0. Show that

$$det(A(1,1)) = -det(A(1,2)).$$

Recall that A(i,j) is the matrix obtained from A by removing the i-th row and the j-th column. (In fact, when i is fixed, $|\det(A(i,j))|$ is a constant for all j.)

6. Let $\mathbf{A} = \mathbf{I}_2$, $\mathbf{B} = \mathbf{J}_2$, and $\mathbf{C} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$. Let $\mathbf{X} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{C} \end{bmatrix}$.

Find $det(\mathbf{X})$ by the Schur complement of \mathbf{A} .

7. Find $det(J_n - I_n)$ as a formula in n.