Sample Questions 9

Let \mathbf{I}_{n} be the $\mathfrak{n} \times \mathfrak{n}$ identity matrix. Let \mathbf{J}_{n} be the $\mathrm{n} \times \mathrm{n}$ all-ones matrix. Also, $\mathbf{1}$ is the all-ones vector and $\mathbf{0}$ is the zero vector.

1. Let \mathbf{A} be an $n \times n$ matrix. Show that $\operatorname{det}(-\mathbf{A})=(-1)^{n} \operatorname{det}(\mathbf{A})$. Furthermore, a matrix is called skew-symmetric if $\mathbf{A}^{\top}=-\mathbf{A}$. Show that an $n \times n$ skew-symmetric matrix is always singular when n is odd.
2. Suppose \mathbf{A} is an $n \times n$ orthogonal matrix. That is $\mathbf{A} \mathbf{A}^{\top}=\mathbf{A}^{\top} \mathbf{A}=\mathbf{I}_{n}$. Show that $|\operatorname{det}(\mathbf{A})|=1$. Next, suppose \mathbf{B} is a matrix whose rows $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{n}}$ are mutually orthogonal. Show that

$$
|\operatorname{det}(\mathbf{B})|=\left|\mathbf{v}_{1}\right| \cdots\left|\mathbf{v}_{2}\right| .
$$

(This is also the expected volume, the product of the length of each sides.)
3. Let R be the rectangle defined by $1 \leqslant$ $x \leqslant 4$ and $2 \leqslant y \leqslant 4$. Define a homomorphism $t: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $t(\mathbf{v})=\mathbf{A v}$ with $\mathbf{A}=\left[\begin{array}{ll}5 & 2 \\ 3 & 4\end{array}\right]$. Draw the region $t(R)$ and compute its area.
4. Find

$$
\operatorname{det}\left[\begin{array}{ccccc}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right]
$$

by Laplace expansion.
5. Suppose \mathbf{A} is a matrix such that $\mathbf{A 1}=$ 0. Show that

$$
\operatorname{det}(\mathbf{A}(1,1))=-\operatorname{det}(\mathbf{A}(1,2))
$$

Recall that $\mathbf{A}(i, j)$ is the matrix obtained from \mathbf{A} by removing the i-th row and the j-th column. (In fact, when i is fixed, $|\operatorname{det}(\mathbf{A}(i, j))|$ is a constant for all j.)
6. Let $\mathbf{A}=\mathbf{I}_{2}, \mathbf{B}=\mathbf{J}_{2}$, and $\mathbf{C}=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$. Let

$$
\mathbf{X}=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{B} & \mathbf{C}
\end{array}\right]
$$

Find $\operatorname{det}(\mathbf{X})$ by the Schur complement of \mathbf{A}.
7. Find $\operatorname{det}\left(\mathbf{J}_{n}-\mathbf{I}_{n}\right)$ as a formula in n.

