Sample Questions 5

1

- 1. Let $\mathbf{u} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Find \mathbf{x} and \mathbf{y} such that $\mathbf{u} = \mathbf{x} + \mathbf{y}$ with $\mathbf{x} \in \text{span}\{\mathbf{v}\}$ and $\langle \mathbf{v}, \mathbf{y} \rangle = 0$.
- 2. Suppose **A** is an $m \times n$ matrix and **B** is an $n \times \ell$ matrix. Show that $(\mathbf{AB})^{\top} = \mathbf{B}^{\top} \mathbf{A}^{\top}$. That is, show that the i, j-entry of $(\mathbf{AB})^{\top}$ and the i, j-entry of $\mathbf{B}^{\top} \mathbf{A}^{\top}$ are the same for i = 1, ..., m and $j = 1, ..., \ell$.
- 3. Let

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}, \text{ and } \mathbf{y} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}.$$

Compute $\langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle$ and $\langle \mathbf{x}, \mathbf{A}^{\top}\mathbf{y} \rangle$ separately and check if they are the same.

4. Show that $\mathbf{A}\mathbf{x} = \mathbf{0}$ if and only if $\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{0}$. [One direction is easy while the other is tricky. Hint: Suppose $\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{0}$. then $\langle \mathbf{x}, \mathbf{A}^{\top}\mathbf{A}\mathbf{x} \rangle = \mathbf{0}$ and you can move \mathbf{A}^{\top} to the other side.]

- 5. Show that **A** has full column rank if and only if $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ is invertible.
- 6. Let

$$\mathbf{x} = \begin{bmatrix} 3+2i \\ 2-3i \\ i \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 3+4i \\ -4i \\ 2-i \end{bmatrix} \in \mathbb{C}^3$.

Find $\langle \mathbf{x}, \mathbf{y} \rangle$, $\langle \mathbf{y}, \mathbf{x} \rangle$, and $|\mathbf{x}|$ (where the inner product is over \mathbb{C}).

7. A Vandermonde matrix is of the form

$$\mathbf{M}(p_1, \dots, p_n) = \begin{bmatrix} 1 & p_1 & \cdots & p_1^{n-1} \\ 1 & p_2 & \cdots & p_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & p_n & \cdots & p_n^{n-1} \end{bmatrix}.$$

Suppose a polynomial $f(x) = a + bx + cx^2 + dx^3 + ex^4$ passes through the five points $(p_1, q_1), \dots, (p_5, q_5)$. Show that

$$\mathbf{M}(p_1, p_2, p_3, p_4, p_5) \begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix} = \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \\ q_5 \end{bmatrix}.$$

[Therefore, you can use five points to determine a degree-four polynomial.]