Sample Questions 4

1. Let V be a two-dimensional space in \mathbb{R}^{3} and f is the (orthogonal) projection map onto V. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be a basis of \mathbb{R}^{3} such that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis of V and \mathbf{v}_{3} is orthogonal to any vector on V. Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$.
2. Let V, \mathcal{B} be as the previous question. Let g be the reflection map with respect to the plane V. That is, treating V as a mirror. Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$.
3. Let \mathbf{v}_{1} and \mathbf{v}_{2} be the unit vector in \mathbb{R}^{2} with angles $\frac{\pi}{4}$ and $\frac{3 \pi}{4}$. Any vector $\mathbf{v} \in \mathbb{R}^{2}$ can be written as $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$ for some coefficients c_{1} and c_{2}. Define the scaling map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $\mathrm{f}\left(\mathrm{c}_{1} \mathbf{v}_{1}+\mathrm{c}_{2} \mathbf{v}_{2}\right)=2 \mathrm{c}_{1} \mathbf{v}_{1}+\mathrm{c}_{2} \mathbf{v}_{2}$. Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ and $\operatorname{Rep}_{\varepsilon, \mathcal{E}}(f)$, where \mathcal{E} is the standard basis of \mathbb{R}^{2}.
4. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ be a basis of a space V. Suppose $f: V \rightarrow V$ is a map such that

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)=\left[\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Find $f\left(\mathbf{v}_{1}+\mathbf{v}_{3}\right)$.
5. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ and $\mathcal{D}=$ $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{3}\right\}$ be bases of the spaces V and W, respectively. Suppose $f: V \rightarrow$ W is a map such that $f\left(\mathbf{v}_{1}\right)=5 \mathbf{u}_{1}$, $\mathrm{f}\left(\mathbf{v}_{2}\right)=3 \mathbf{v}_{2}$, and $\mathrm{f}\left(\mathbf{v}_{3}\right)=\mathrm{f}\left(\mathbf{v}_{4}\right)=\mathbf{0}$. Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{D}}(f)$.
6. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ and $\mathcal{D}=$ $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{3}\right\}$ be bases of the spaces V and W, respectively. Suppose $f: V \rightarrow$ W is a map such that

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{D}}(f)=\left[\begin{array}{llll}
5 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Find $f\left(\mathbf{v}_{1}+\mathbf{v}_{3}\right)$.
7. Let

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

and $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ a map defined by $\mathrm{f}(\mathbf{v})=A \mathbf{v}$. Let B be a basis whose vectors are the columns of

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & -1 & 0 & 1 \\
1 & 1 & -1 & 0 \\
1 & -1 & 0 & -1
\end{array}\right] .
$$

Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$.

