Sample Questions 2

Let \mathcal{P}_{n} be the polynomials of degree at most n. Let \mathcal{S}_{n} be the standard basis of \mathbb{R}^{n}. Let \mathbf{I}_{n} be the identity matrix of order n. Let \mathbf{J}_{n} be the all-ones matrix of order n.

1. Let $\mathcal{B}=\left\{1, x, x^{2}\right\}$ and $\mathcal{D}=\{1, x, x(x-1)\}$ be two bases of \mathcal{P}_{2}. Find matrices M and N such that

$$
\begin{aligned}
\mathbf{M} \operatorname{Rep}_{\mathcal{B}}(\mathbf{p}) & =\operatorname{Rep}_{\mathcal{D}}(\mathbf{p}) \text { and } \\
\mathbf{N} \operatorname{Rep}_{\mathcal{D}}(\mathbf{p}) & =\operatorname{Rep}_{\mathcal{B}}(\mathbf{p})
\end{aligned}
$$

for all $\mathbf{p} \in \mathcal{P}_{2}$. Also, check that if $\mathbf{M N}=\mathbf{N M}=\mathbf{I}_{3}$ or not.
2. Let $\mathcal{B}=S_{3}$ and

$$
\mathcal{D}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

be two bases of \mathbb{R}^{3}. Find matrices \mathbf{M} and \mathbf{N} such that

$$
\begin{aligned}
\mathbf{M} \operatorname{Rep}_{\mathcal{B}}(\mathbf{v}) & =\operatorname{Rep}_{\mathcal{D}}(\mathbf{v}) \text { and } \\
\mathbf{N} \operatorname{Rep}_{\mathcal{D}}(\mathbf{v}) & =\operatorname{Rep}_{\mathcal{B}}(\mathbf{v})
\end{aligned}
$$

for all $\mathbf{v} \in \mathcal{P}_{2}$. Also, check that if $\mathbf{M N}=\mathbf{N M}=\mathbf{I}_{3}$ or not.

Let $\mathcal{B}=\mathcal{S}_{2}$ and

$$
\mathcal{D}=\left\{\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right],\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]\right\}
$$

be two bases of \mathbb{R}^{2}. Then there is a relation between

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\operatorname{Rep}_{\mathcal{B}}(\mathbf{v}) \text { and }\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\operatorname{Rep}_{\mathcal{D}}(\mathbf{v}) .
$$

3. On the \mathbb{R}^{2} plane, the equation $(x+$ $y)(x-y)=0$ is a diagonal cross. Rewrite the equation using x^{\prime} and y^{\prime}. Use desmos to see the figures of the two equations.
4. On the \mathbb{R}^{2} plane, the equation $7 x^{2}-$ $2 x y+7 y^{2}=1$ is an ellipse. Rewrite the equation using x^{\prime} and y^{\prime}. Use desmos to see the figures of the two equations.
5. Define a homomorphism $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $f(\mathbf{v})=\mathbf{J}_{2} \mathbf{v}$. It is easy to see that $J_{2}=\operatorname{Rep}_{s_{2, S_{2}}}(f)$. Instead of using the standard basis \mathcal{S}_{2}, find $\Lambda=\operatorname{Rep}_{\mathcal{D}, \mathcal{D}}(f)$. Try to describe the geometry of f.
6. Let Λ be as in the previous problem. Find $\mathbf{Q}=\operatorname{Rep}_{\mathcal{D}, s_{2}}(\mathrm{id})$. Also, check that if $\mathbf{Q}^{-1} \mathbf{J}_{2} \mathbf{Q}=\Lambda$. Is this a coincidence?
7. Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & 4 & 7 \\
4 & 6 & 10
\end{array}\right] \text { and } \mathbf{B}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

be two matrices. Find \mathbf{P} and \mathbf{Q} so that $\mathbf{P A Q}=\mathbf{B}$.

