Sample Solutions for Sample Questions 14.
1.

$$
\begin{aligned}
& I_{4}=\left(\begin{array}{lll}
1 & 1 & \\
& 1 & \\
& & 1 \\
& & 1
\end{array}\right) \\
& A=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 1 \\
& 0 & 1 \\
& 0 & 0
\end{array}\right) \\
& A^{2}=\left(\begin{array}{llll}
0 & 0 & 1 \\
0 & 0 & 1 \\
& 0 & 1 \\
& 0 & 0
\end{array}\right) \\
& A^{3}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \\
& A^{4}=0
\end{aligned}
$$

Suppose $a_{0} I_{4}+a_{1} A+a_{2} A^{2}+a_{3} A^{3}=0$

$$
\left(\begin{array}{ccc}
a_{0} & a_{1} & a_{2} \\
& a_{3} \\
a_{1} & a_{1} & a_{1} \\
& a_{0} & a_{2} \\
& a_{0} & a_{1} \\
& a_{0}
\end{array}\right)=0 \Rightarrow a_{0}=a_{1}=a_{2}=a_{3}=0
$$

$\Rightarrow\left\{I_{4}, A, A^{2}, A^{3}\right\}$ is linearly independent.
But $A^{4}=0$.
$\Rightarrow p(A) \neq 0$ if $\operatorname{deg} p(x) \leq 3$.

$$
p(A)=0 \text { if } p(x)=x^{4} . \Rightarrow \min \text { poly is } p(x)=x^{4} \text {. }
$$

Similarly, the min poly of $A+\lambda I_{4}$ is $p(x)=(x-\lambda)^{4}$.
2.

$$
\begin{aligned}
& I=\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right) \\
& A=\left(\begin{array}{llll}
2 & & & \\
& 2 & & \\
& & 3 & \\
& & & 3
\end{array}\right) \\
& A^{2}=\left(\begin{array}{llll}
4 & & & \\
& & 4 & \\
& & & 9 \\
& & & 9
\end{array}\right)
\end{aligned}
$$

Solve $\quad a_{0} I+a_{1} A+A^{2}=0$.

$$
\begin{aligned}
& \left(\begin{array}{rr}
a_{0}+2 a_{1}+4 & \\
a_{0}+2 a_{1}+4 & \\
& a_{0}+3 a_{1}+9 \\
& a_{0}+3 a_{1}+9
\end{array}\right)=0 \\
& \Rightarrow\left\{\begin{array} { l }
{ a _ { 0 } + 2 a _ { 1 } = - 4 } \\
{ a _ { 0 } + 3 a _ { 1 } = - 9 }
\end{array} \Rightarrow \left\{\begin{array}{l}
a_{0}=6 \\
a_{1}=-5
\end{array}\right.\right.
\end{aligned}
$$

So $p(A)=0$ when $p(x)=x^{2}-5 x+6=(x-2)(x-3)$.
(You may check $p(A) \ngtr 0$ if $\operatorname{deg} p(x) \leqslant 1$.).

Se $\min p o l y$ is $p(x)=x^{2}-5 x+6$.

3

$$
\begin{aligned}
& f^{\prime}=\left(\begin{array}{ccc}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z}
\end{array}\right)=\left(\begin{array}{ccc}
\cos \theta & -r \sin \theta & 0 \\
\sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) . \\
& \Rightarrow \operatorname{det}\left(f^{\prime}\right)=r \cos ^{2} \theta+r \sin ^{2} \theta=r .
\end{aligned}
$$

4.

$$
f^{\prime}=\left(\begin{array}{ccc}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi}
\end{array}\right)=\left(\begin{array}{ccc}
\sin \phi \cos \theta & -r \sin \phi \sin \theta & r \cos \phi \cos \theta \\
\sin \phi \sin \theta & r \sin \phi \cos \theta & r \cos \phi \sin \theta \\
\cos \phi & 0 & -r \sin \phi
\end{array}\right)
$$

$$
\begin{aligned}
\Rightarrow \operatorname{det}\left(f^{\prime}\right)= & -r \sin \phi \cdot \operatorname{det}\left(\begin{array}{cc}
\sin \phi \cos \theta & -r \sin \phi \sin \theta \\
\sin \phi \sin \theta & r \sin \phi \cos \theta
\end{array}\right) \\
& +\cos \phi \cdot \operatorname{det}\left(\begin{array}{cc}
-r \sin \phi \sin \theta & r \cos \phi \cos \theta \\
r \sin \phi \cos \theta & r \cos \phi \sin \theta
\end{array}\right) \\
= & -r^{2}(\sin \phi)^{3} \cdot \operatorname{det}\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)+r^{2}(\cos \phi)^{2} \sin \phi\left(\begin{array}{cc}
-\sin \theta & \cos \theta \\
\cos \theta & \sin \theta
\end{array}\right) \\
= & -r^{2} \sin \phi^{3}-r^{2}(\cos \phi)^{2} \sin \phi \\
= & -r^{2} \sin \phi\left(\sin ^{2} \phi+\cos ^{2} \phi\right)=-r^{2} \sin \phi
\end{aligned}
$$

5. $f(\vec{v})=A \vec{v}$.

That is

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\binom{y_{1}}{y_{2}}
$$

$$
\begin{aligned}
& \Rightarrow \begin{cases}y_{1} & -1 x_{1}+2 x_{2}+3 x_{3} \\
y_{2} & =4 x_{1}+5 x_{2}+6 x_{3}\end{cases} \\
& f^{\prime}=\left(\begin{array}{lll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{1}}{\partial x_{3}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{3}}
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) .
\end{aligned}
$$

So $f^{\prime}=A$.
In fact, if $f(\vec{v})=A \vec{v}$, then $f^{\prime}=A$.
6.

Since $f(x)$ is over C,
by the Fundamental Theorem of Algebra, We may write

$$
f(x)=\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{n}\right)
$$

($\lambda_{1}, \ldots, \lambda_{n}$ wight repeat).
(1) Suppose $\lambda_{1}, \ldots, \lambda_{n}$ bass contains a multiple root

Without loss of generality, assume $\lambda_{1}=\lambda_{2}$.
Then $f^{\prime}(x)=\frac{f(x)}{\left(x-\lambda_{1}\right)}+\frac{f(x)}{\left(x-\lambda_{2}\right)}+\cdots+\frac{f(x)}{x-\lambda_{n}}$
Note that $\frac{f(x)}{x-x_{2}}, \frac{f(x)}{x-\lambda_{1}}$ contains the factor $x-\lambda_{2}$

$$
\frac{f(x)}{x-\lambda_{2}} \cdots x-\lambda_{1}
$$

and $\frac{f(x)}{x-\lambda_{i}}$ has factors $x-\lambda_{1}$ and $x-\lambda_{2}$ for $i=3, \ldots, n$.
$\Rightarrow s_{0} \lambda_{1}=\lambda_{2}$ is a common root for $f(x)$ and $f^{\prime}(x)$.
(2) Suppose $\lambda_{1}, \ldots, \lambda_{1}$ are all distinct.

Then $f^{\prime}(x)=\frac{f(x)}{x-\lambda_{1}}+\frac{f(x)}{x-\lambda_{2}}+\cdots+\frac{f(x)}{x-\lambda_{n}}$.
Compute $f^{\prime}\left(\lambda_{1}\right)=\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}, \lambda_{3}\right) \ldots\left(\lambda_{1}-\lambda_{n}\right)+0+0+\cdots+0 \neq 0$.
Similarly, $f^{\prime}\left(\lambda_{2}\right) \neq 0, \ldots, f^{\prime}\left(\lambda_{n}\right) \neq 0$.
$\Rightarrow f(x)$ and $f^{\prime}(x)$ have no common root.
7.

Equivalently（By Problem 6），
We check if $f(x)$ and $f^{\prime}(x)$ have a common root．

$$
\begin{array}{ll}
f(x)=x^{4}+2 x^{3}+3 x^{2}+2 x+1 & \text { 4 = } \quad 4+3=7 \\
f^{\prime}(x)= & 4 x^{3}+6 x^{2}+6 x+2 .
\end{array}
$$

（1）．Sylvester matrix
$\Rightarrow f$ has a multiple root．
（2）車共車索相除法。
$\Rightarrow x^{2}+x+1$ is a common factor of f and f^{\prime} ．

