Sample Questions 13

Let \mathbf{J}_{n} be the $\mathfrak{n} \times \mathrm{n}$ all-ones matrix. Let I_{n} be the $n \times n$ identity matrix.

1. Let n be a positive integer and $\omega=$ $e^{\frac{2 \pi}{n} i}$. Let $\mathbf{Q}=\left[\omega^{(j-1)(k-1)}\right]$. That is, the \mathfrak{j}, k-entry of \mathbf{Q} is $\omega^{(j-1)(k-1)}$. Show that $\frac{1}{\sqrt{n}} \mathbf{Q}$ is a unitary matrix. [This matrix is used for the Fast Fourier Transform.]
2. Let

$$
\mathbf{A}=\left[\begin{array}{ll}
3 & 5 \\
2 & 4
\end{array}\right]
$$

Find S_{k} for $k=0,1,2$ and then use them to find the characteristic polynomial of \mathbf{A}.

Find S_{k} for $k=0,1,2,3$ and then use them to find the characteristic polynomial of \mathbf{A}.
4. Let $\mathbf{A}=\mathbf{J}_{\mathrm{n}}$. Find S_{k} for $\mathrm{k}=0, \ldots, \mathrm{n}$ and then use them to find the characteristic polynomial of \mathbf{J}_{n}.
5. Let $\mathbf{A}=\mathbf{J}_{n}-\mathbf{I}_{\mathrm{n}}$ be the $\mathrm{n} \times \mathrm{n}$ all-ones matrix. Use Problem 4 to find the characteristic polynomial of A.
6. Let $p(x)$ be a polynomial. Let \mathbf{A} be a matrix and \mathbf{Q} an invertible matrix. Show that $\mathbf{Q}^{-1} \mathbf{p}(\mathbf{A}) \mathbf{Q}=p\left(\mathbf{Q}^{-1} \mathbf{A Q}\right)$.
7. Show that the Cayley-Hamilton theorem is true for diagonalizable matrices. That is, if \mathbf{A} is a diagonalizable matrix with its characteristic polynomial $p(x)$, then $p(\mathbf{A})=\mathbf{O}$.

