Sample Questions 10

For Problems $1 \sim 3$, let $\mathbf{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.
solution for $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0}$.

1. Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \text { and } \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

Find λ_{1} and λ_{2} such that $\mathbf{A v}_{1}=\lambda_{1} \mathbf{v}_{1}$ and $\boldsymbol{A v}_{2}=\lambda_{2} \mathbf{v}_{2}$. Also, find an invertible matrix \mathbf{Q} and a diagonal matrix \mathbf{D} such that $\mathbf{A Q}=\mathbf{Q D}$.
2. Let $\mathbf{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. Compute $p(x)=$ $\operatorname{det}(\mathbf{A}-x \mathbf{I})$ and then solve the equation $p(x)=0$.
3. For each of $\lambda=0,2$, find a nonzero
4. Diagonalize $\mathbf{A}=\left[\begin{array}{cc}-2 & 15 \\ 1 & 0\end{array}\right]$.
5. Diagonalize $\mathbf{A}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.
6. Diagonalize $\mathbf{A}=\left[\begin{array}{ccc}2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$.
7. Diagonalize $\mathbf{A}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$.

