Sample Questions 10

For Problems 1~3, let
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
.

solution for $(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$.

4. Diagonalize
$$\mathbf{A} = \begin{bmatrix} -2 & 15 \\ 1 & 0 \end{bmatrix}$$
.

5. Diagonalize
$$\mathbf{A} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

6. Diagonalize
$$\mathbf{A} = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$
.

7. Diagonalize
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
.

1. Let

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Find λ_1 and λ_2 such that $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$. Also, find an invertible matrix **Q** and a diagonal matrix **D** such that AQ = QD.

2. Let
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
. Compute $p(\mathbf{x}) = det(\mathbf{A} - \mathbf{x}\mathbf{I})$ and then solve the equation $p(\mathbf{x}) = 0$.

3. For each of $\lambda = 0, 2$, find a nonzero