線性代數（二）MATH 104 ／GEAI 1209：Linear Algebra II

第二次期中考
May 4， 2020
Midterm 2

姓名 Name ： \qquad
學號 Student ID \＃： \qquad

Lecturer：Jephian Lin 林晉宏
Contents：cover page， 7 pages of questions， score page at the end
To be answered：on the test paper
Duration： 110 minutes
Total points： $\mathbf{3 0}$ points +2 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－可用中文或英文作答

1. Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right], \text { and } V=\operatorname{span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}\right)
$$

(a) $[2 \mathrm{pt}]$ Find two vectors in V^{\perp} such that they are independent.
(b) $[1 \mathrm{pt}]$ Find a vector that is not in V^{\perp}.
2. Let

$$
A=\left[\begin{array}{cccc}
a & b & c & d \\
e & f & g & h \\
i & j & k & \ell \\
m & n & o & p
\end{array}\right]
$$

By the permutation expansion, $\operatorname{det}(A)=a f k p+\cdots$ is the sum of 4 ! terms.
(a) $[1 \mathrm{pt}]$ Find a term of $\operatorname{det}(A)$ with positive sign (other than $a f k p$).
(b) $[1 \mathrm{pt}]$ Find a term of $\operatorname{det}(A)$ with negative sign.
3. Let

$$
V=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]: x-3 y+2 z=0\right\}
$$

(a) $[2 \mathrm{pt}]$ Find a basis of V.
(b) $[3 \mathrm{pt}]$ Let $\mathbf{u}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$. Find the projection of \mathbf{u} onto the plane V.
4. [5pt] Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \text { and } \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Apply the Gram-Schmidt algorithm to the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and obtain an orthogonal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ for $V=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
5. [5pt] Let

$$
A=\left[\begin{array}{llll}
x & 4 & 0 & 0 \\
4 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right],
$$

where x is a real number. Find $x \in \mathbb{R}$ such that $\operatorname{det}(A)=0$.
6. [5pt] Let

$$
A=\left[\begin{array}{cccc}
1 & a & a^{2} & a^{3} \\
1 & b & b^{2} & b^{3} \\
1 & c & c^{2} & c^{3} \\
1 & d & d^{2} & d^{3}
\end{array}\right]
$$

Show that $\operatorname{det}(A)=(b-a)(c-a)(d-a)(c-b)(d-b)(d-c)$. Make sure to justify every step of your argument.
7. [5pt] Let J_{n} be the $n \times n$ all-ones matrix. Let I_{n} be the $n \times n$ identity matrix. Find $\operatorname{det}\left(J_{n}-I_{n}\right)$ as a formula of n. Make sure to justify every step of your argument.
8. [extra 2pt] Let

$$
A=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Find $\operatorname{det}(A)$.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	2	
Total	$30(+2)$	

