\qquad
學號 Student ID \＃： \qquad

Lecturer：Jephian Lin 林晉宏
Contents：cover page， 6 pages of questions， score page at the end
To be answered：on the test paper
Duration： 110 minutes
Total points： $\mathbf{2 5}$ points +2 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－可用中文或英文作答

1. Let $\mathbf{v}=\left[\begin{array}{l}5 \\ 3\end{array}\right]$ and $\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ the standard basis of \mathbb{R}^{2}. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be another basis of \mathbb{R}^{2}, where $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
(a) [1pt] Find $\operatorname{Rep}_{\mathcal{E}}(\mathbf{v})$.
(b) $[1 \mathrm{pt}]$ Find $\operatorname{Rep}_{\mathcal{B}}(\mathbf{v})$.
2. Let $\mathbf{p}=x^{2}+2 x+3$ be a polynomial in \mathcal{P}_{2}, the space of all polynomials of degree at most 2 .
(a) $[1 \mathrm{pt}]$ Let $\mathcal{B}=\left\{1, x, x^{2}\right\}$ be a basis of \mathcal{P}_{2}. Find $\operatorname{Rep}_{\mathcal{B}}(\mathbf{p})$.
(b) $[1 \mathrm{pt}]$ Let $\mathcal{C}=\left\{1, x+1,(x+1)^{2}\right\}$ be a basis of \mathcal{P}_{2}. Find $\operatorname{Rep}_{\mathcal{C}}(\mathbf{p})$.
(c) $[1 \mathrm{pt}]$ Let $\mathcal{D}=\left\{x^{2}, x, 1\right\}$ be a basis of \mathcal{P}_{2}. Find $\operatorname{Rep}_{\mathcal{D}}(\mathbf{p})$.
3. Let $\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ be the standard basis of \mathbb{R}^{3} and $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ another basis of \mathbb{R}^{3}, where

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

(a) $[2 \mathrm{pt}]$ Find a matrix M such that $M \operatorname{Rep}_{\mathcal{B}}(\mathbf{v})=\operatorname{Rep}_{\mathcal{E}}(\mathbf{v})$ for any $\mathbf{v} \in \mathbb{R}^{3}$.
(b) $[3 \mathrm{pt}]$ Find a matrix N such that $N \operatorname{Rep}_{\mathcal{E}}(\mathbf{v})=\operatorname{Rep}_{\mathcal{B}}(\mathbf{v})$ for any $\mathbf{v} \in$ \mathbb{R}^{3}.
4. Define three polynomials as follows.

$$
\begin{aligned}
& f_{1}(x)=\frac{1}{2}(x-2)(x-3) \\
& f_{2}(x)=-(x-1)(x-3) \\
& f_{3}(x)=\frac{1}{2}(x-1)(x-2)
\end{aligned}
$$

It is known that $\mathcal{B}=\left\{f_{1}, f_{2}, f_{3}\right\}$ is a basis of \mathcal{P}_{2}, the space of all polynomials of degree at most 2 .
(a) $[2 \mathrm{pt}]$ Let $\mathbf{p}(x)=3 x^{2}+5 x+4$. Find $\operatorname{Rep}_{\mathcal{B}}(\mathbf{p})$.
(b) $[3 \mathrm{pt}]$ Let $\mathcal{D}=\left\{1, x+1,(x+1)^{2}\right\}$ be another basis of \mathcal{P}_{2}. Find a matrix M such that $M \operatorname{Rep}_{\mathcal{D}}(\mathbf{q})=\operatorname{Rep}_{\mathcal{B}}(\mathbf{q})$ for any $\mathbf{q} \in \mathcal{P}_{2}$.
5. [5pt] Define a map $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ by $f(\mathbf{v})=A \mathbf{v}$, where

$$
A=\left[\begin{array}{llll}
3 & 0 & 0 & 3 \\
0 & 2 & 2 & 0 \\
3 & 0 & 0 & 3
\end{array}\right]
$$

Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ and $\mathcal{D}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ such that

$$
\begin{gathered}
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right] \text { and } \\
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
\end{gathered}
$$

Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{D}}(f)$.
6. Let $E_{i j}$ be the 2×3 matrix whose entries are all zeros except that the i, j-entry is one. Then

$$
\mathcal{B}=\left\{E_{11}, E_{12}, E_{13}, E_{21}, E_{22}, E_{23}\right\}
$$

is a basis of $\mathcal{M}_{2 \times 3}$, the space of all 2×3 real matrices. Suppose f : $\mathcal{M}_{2 \times 3} \rightarrow \mathcal{M}_{2 \times 3}$ is a homomorphism such that $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ equals

$$
A=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

(a) $[1 \mathrm{pt}]$ Let $M=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$. Find $f(M)$.
(b) $[2 \mathrm{pt}]$ Find the range of f.
(c) $[2 \mathrm{pt}]$ Find the nullspace of f.
7. [extra 2 pt$]$ Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a map defined by $f(\mathbf{v})=A \mathbf{v}$, where

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

Find two bases \mathcal{B} and \mathcal{D} of \mathbb{R}^{3} such that $\operatorname{Rep}_{\mathcal{B}, \mathcal{D}}(f)$ is the identity matrix.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	2	
Total	$25(+2)$	

