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1. Let v =

[
3
5

]
and E = {e1, e2} the standard basis of R2. Let B = {v1,v2}

be another basis of R2, where v1 =

[
1
1

]
and v2 =

[
1
−1

]
.

(a) [1pt] Find RepE(v).

(b) [1pt] Find RepB(v).

2. Let p = x2 + 3x + 2 be a polynomial in P2, the space of all polynomials
of degree at most 2.

(a) [1pt] Let B = {1, x, x2} be a basis of P2. Find RepB(p).

(b) [1pt] Let C = {1, x + 1, (x + 1)2} be a basis of P2. Find RepC(p).

(c) [1pt] Let D = {x2, x, 1} be a basis of P2. Find RepD(p).
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3. Let E = {e1, e2, e3} be the standard basis of R3 and B = {v1,v2,v3}
another basis of R3, where

v1 =

 1
−1
1

 ,v2 =

 0
1
−1

 ,v3 =

0
0
1

 .

(a) [2pt] Find a matrix M such that M RepB(v) = RepE(v) for any
v ∈ R3.

(b) [3pt] Find a matrix N such that N RepE(v) = RepB(v) for any v ∈
R3.
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4. Define three polynomials as follows.

f1(x) =
1

2
(x− 2)(x− 3)

f2(x) = −(x− 1)(x− 3)

f3(x) =
1

2
(x− 1)(x− 2)

It is known that B = {f1, f2, f3} is a basis of P2, the space of all polyno-
mials of degree at most 2.

(a) [2pt] Let p(x) = 3x2 + 4x + 5. Find RepB(p).

(b) [3pt] Let D = {1, x + 2, (x + 2)2} be another basis of P2. Find a
matrix M such that M RepD(q) = RepB(q) for any q ∈ P2.
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5. [5pt] Define a map f : R4 → R3 by f(v) = Av, where

A =

2 0 0 2
0 3 3 0
2 0 0 2

 .

Let B = {v1,v2,v3,v4} and D = {u1,u2,u3} such that

v1 =


1
0
0
1

 ,v2 =


0
1
1
0

 ,v3 =


1
0
0
−1

 ,v4 =


0
1
−1
0

 and.

u1 =

1
0
1

 ,u2 =

0
1
0

 ,u3 =

 1
0
−1

 .

Find RepB,D(f).
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6. Let Eij be the 2 × 3 matrix whose entries are all zeros except that the
i, j-entry is one. Then

B = {E11, E12, E13, E21, E22, E23}

is a basis of M2×3, the space of all 2 × 3 real matrices. Suppose f :
M2×3 →M2×3 is a homomorphism such that RepB,B(f) equals

A =



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

 .

(a) [1pt] Let M =

[
1 2 3
4 5 6

]
. Find f(M).

(b) [2pt] Find the range of f .

(c) [2pt] Find the nullspace of f .
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7. [extra 2pt] Let f : R3 → R3 be a map defined by f(v) = Av, where

A =

1 1 1
1 2 2
1 2 3

 .

Find two bases B and D of R3 such that RepB,D(f) is the identity matrix.

[END]
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