國立中山大學	NATIONAL SUN YAT-SEN UNIVERSITY		
線性代數(二)	MATH 104 / GEAI 1209: Linear Algebra II		
期末考	June 8, 2020	June 8, 2020 Final Exam	
姓名 Name :_		_	
學號 Student ID # :_		_	
	Lecturer:	Jephian Lin 林晉宏	
	Contents:	cover page,	
		8 pages of questions,	
		score page at the end	
	To be answered:	on the test paper	
		110 minutes	

Do not open this packet until instructed to do so.

Total points: **30 points** + 7 extra points

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining it or circling it. If multiple answers are shown then no marks will be awarded.
- 可用中文或英文作答

1. [1pt] Give an example of a 2×2 matrix $A = [a_{ij}]$ such that A is an orthogonal matrix (i.e., $A^{\top}A = I$) with $a_{21} \neq 0$.

2. [1pt] Give an example of a 2×2 matrix $A = [a_{ij}]$ such that A is diagonalizable and $a_{21} \neq 0$.

3. [1pt] Give an example of a 2×2 matrix $A = [a_{ij}]$ such that A is not diagonalizable and $a_{21} \neq 0$.

4. [1pt] Find a 2 × 2 matrix $A = [a_{ij}]$ such that the eigenvalues of A are $\{1,3\}$ and $a_{12} = a_{21} = 1$.

5. [1pt] Give an example of a 5×5 matrix A whose only eigenvalue is 2 with algebraic multiplicity 5 and geometric multiplicity 3.

6. Let E_{ij} be the 2 × 3 matrix whose entries are all zeros except that the i, j-entry is one. Then

 $\mathcal{B} = \{E_{11}, E_{12}, E_{13}, E_{21}, E_{22}, E_{23}\}$

is a basis of $\mathcal{M}_{2\times 3}$, the space of all 2×3 real matrices. Suppose $f : \mathcal{M}_{2\times 3} \to \mathcal{M}_{2\times 3}$ is a homomorphism such that $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$ equals

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) [1pt] Let
$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
. Find $f(M)$.

(b) [2pt] Find the range of f.

(c) [2pt] Find the nullspace of f.

7. [5pt] Let

$$A = \begin{bmatrix} 2 & 10 & -20 \\ 0 & 4 & 4 \\ 0 & 0 & 6 \end{bmatrix}.$$

Find an invertible matrix Q and a diagonal matrix D such that AQ = QD.

8. [5pt] Let

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

and

$$p(x) = \det(A - xI) = a_0 x^6 + a_1 x^5 + a_2 x^4 + a_3 x^3 + a_4 x^2 + a_5 x + a_6$$

its characteristic polynomial. Find a_0, a_1, a_2, a_5 , and a_6 .

9. [5pt] Let J_n be the $n \times n$ all-ones matrix. Let I_n be the $n \times n$ identity matrix. Find $\det(J_n + I_n)$ as a formula of n. Make sure to justify every step of your argument.

10. [5pt] Let U be an $n \times n$ real upper-triangular matrix. Show that if $UU^{\top} = U^{\top}U$, then U is a diagonal matrix.

11. [extra 5pt] Let

$$A = \begin{bmatrix} -1 & 12\\ 1 & 0 \end{bmatrix}.$$

Find A^{100} . [Hint: Write A as QDQ^{-1} .]

12. $\left[\text{extra 2pt} \right]$ Let

$$p(x) = x^3 - x^2 - 2x.$$

Find a 3×3 matrix A such that p(A) = O and the three eigenvalues of A are all distinct.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	5	
8	2	
Total	30 (+7)	