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1. [1pt] Give an example of a 2 × 2 matrix A =
[
aij
]

such that A is an
orthogonal matrix (i.e., A>A = I) with a21 6= 0.

2. [1pt] Give an example of a 2× 2 matrix A =
[
aij
]

such that A is diago-
nalizable and a21 6= 0.

3. [1pt] Give an example of a 2 × 2 matrix A =
[
aij
]

such that A is not
diagonalizable and a21 6= 0.

4. [1pt] Find a 2 × 2 matrix A =
[
aij
]

such that the eigenvalues of A are
{1, 3} and a12 = a21 = 1.

5. [1pt] Give an example of a 5 × 5 matrix A whose only eigenvalue is 2
with algebraic multiplicity 5 and geometric multiplicity 3.
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6. Let Eij be the 2 × 3 matrix whose entries are all zeros except that the
i, j-entry is one. Then

B = {E11, E12, E13, E21, E22, E23}

is a basis of M2×3, the space of all 2 × 3 real matrices. Suppose f :
M2×3 →M2×3 is a homomorphism such that RepB,B(f) equals

A =



0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

 .

(a) [1pt] Let M =

[
1 2 3
4 5 6

]
. Find f(M).

(b) [2pt] Find the range of f .

(c) [2pt] Find the nullspace of f .
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7. [5pt] Let

A =

2 10 −20
0 4 4
0 0 6

 .

Find an invertible matrix Q and a diagonal matrix D such that AQ =
QD.
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8. [5pt] Let

A =



0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0


and

p(x) = det(A− xI) = a0x
6 + a1x

5 + a2x
4 + a3x

3 + a4x
2 + a5x + a6

its characteristic polynomial. Find a0, a1, a2, a5, and a6.
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9. [5pt] Let Jn be the n × n all-ones matrix. Let In be the n × n identity
matrix. Find det(Jn + In) as a formula of n. Make sure to justify every
step of your argument.
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10. [5pt] Let U be an n × n real upper-triangular matrix. Show that if
UU> = U>U , then U is a diagonal matrix.
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11. [extra 5pt] Let

A =

[
−1 12
1 0

]
.

Find A100. [Hint: Write A as QDQ−1.]
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12. [extra 2pt] Let
p(x) = x3 − x2 − 2x.

Find a 3 × 3 matrix A such that p(A) = O and the three eigenvalues of
A are all distinct.

[END]
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