線性代數（二）
期末考

姓名 Name： \qquad
學號 Student ID \＃： \qquad

Lecturer：Jephian Lin 林晉宏
Contents：cover page， 8 pages of questions， score page at the end
To be answered：on the test paper
Duration： 110 minutes
Total points： $\mathbf{3 0}$ points +7 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－可用中文或英文作答

1. $[1 \mathrm{pt}]$ Give an example of a 2×2 matrix $A=\left[a_{i j}\right]$ such that A is an orthogonal matrix (i.e., $A^{\top} A=I$) with $a_{12} \neq 0$.
2. [1pt] Give an example of a 2×2 matrix $A=\left[a_{i j}\right]$ such that A is diagonalizable and $a_{12} \neq 0$.
3. [1pt] Give an example of a 2×2 matrix $A=\left[a_{i j}\right]$ such that A is not diagonalizable and $a_{12} \neq 0$.
4. [1pt] Find a 2×2 matrix $A=\left[a_{i j}\right]$ such that the eigenvalues of A are $\{1,5\}$ and $a_{12}=a_{21}=2$.
5. [1pt] Give an example of a 5×5 matrix A whose only eigenvalue is 3 with algebraic multiplicity 5 and geometric multiplicity 2.
6. Let $E_{i j}$ be the 2×3 matrix whose entries are all zeros except that the i, j-entry is one. Then

$$
\mathcal{B}=\left\{E_{11}, E_{12}, E_{13}, E_{21}, E_{22}, E_{23}\right\}
$$

is a basis of $\mathcal{M}_{2 \times 3}$, the space of all 2×3 real matrices. Suppose f : $\mathcal{M}_{2 \times 3} \rightarrow \mathcal{M}_{2 \times 3}$ is a homomorphism such that $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ equals

$$
A=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

(a) $[1 \mathrm{pt}]$ Let $M=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$. Find $f(M)$.
(b) [2pt] Find the range of f.
(c) $[2 \mathrm{pt}]$ Find the nullspace of f.
7. [5pt] Let

$$
A=\left[\begin{array}{ccc}
3 & 8 & -24 \\
0 & 5 & 6 \\
0 & 0 & 7
\end{array}\right]
$$

Find an invertible matrix Q and a diagonal matrix D such that $A Q=$ $Q D$.
8. [5pt] Let

$$
A=\left[\begin{array}{cccccc}
0 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

and

$$
p(x)=\operatorname{det}(A-x I)=a_{0} x^{6}+a_{1} x^{5}+a_{2} x^{4}+a_{3} x^{3}+a_{4} x^{2}+a_{5} x+a_{6}
$$

its characteristic polynomial. Find $a_{0}, a_{1}, a_{2}, a_{5}$, and a_{6}.
9. [5pt] Let J_{n} be the $n \times n$ all-ones matrix. Let I_{n} be the $n \times n$ identity matrix. Find $\operatorname{det}\left(J_{n}+I_{n}\right)$ as a formula of n. Make sure to justify every step of your argument.
10. [5pt] Let U be an $n \times n$ real upper-triangular matrix. Show that if $U U^{\top}=U^{\top} U$, then U is a diagonal matrix.
11. [extra 5pt] Let

$$
A=\left[\begin{array}{cc}
-3 & 10 \\
1 & 0
\end{array}\right]
$$

Find A^{100}. [Hint: Write A as $Q D Q^{-1}$.]
12. [extra 2pt] Let

$$
p(x)=x^{3}+x^{2}-2 x .
$$

Find a 3×3 matrix A such that $p(A)=O$ and the three eigenvalues of A are all distinct.

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	5	
8	2	
Total	$30(+7)$	

