Math589 Homework 8

1. [1pt] Let G be the graph with labeled vertices and edges as shown below. Find all elements in the cycle space $\mathcal{C}(G)$.

Solution.

2. [1pt] Let G be the graph with labeled vertices and edges as in the previous question. Find all elements in the cut space $\mathcal{B}(\mathrm{G})$ and mark each bond.

Solution.

Questions to ponder:

1. Let 0 and 1 be the elements in \mathbb{F}_{2}. Finish the following tables for addition and multiplication.

+	0	1	
0			\times
1			1
0			

2. Let G be a graph. Recall that $\mathrm{E}(v)$ is the cut between $\{v\}$ and $\mathrm{V}(\mathrm{G}) \backslash\{v\}$. Is $\mathrm{E}(v)$ always a bond? Is a bond always $\mathrm{E}(v)$ for some v ?
3. Let G be the graph as in Page 1. Let T be the spanning tree whose edges are $E(G) \backslash\left\{e_{4}, e_{5}\right\}$. Write the cycle $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ as a sum of fundamental cycles. Write the cut $\left\{e_{1}, e_{4}, e_{6}\right\}$ as a sum of fundamental cuts.
4. Let

$$
A=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

be a matrix in \mathbb{F}_{2}. Find a basis of its kernel and a basis of its row space.
5. Practice your T_{E} Xnique at https://texnique. xyz /.

