Math589 Homework 5

1. [1pt] Let G be the Petersen graph. Read the proof of Proposition 3.1.1 in the textbook and obtain an "ear decomposition" $\left(\mathrm{H}_{1}, \mathrm{P}_{1}\right), \ldots,\left(\mathrm{H}_{\mathrm{m}}, \mathrm{P}_{\mathrm{m}}\right)$ of G such that

- H_{1} is a cycle.
- P_{i} is a path connecting two distinct vertices of H_{i}. (possibly just an edge)
- $H_{i+1}=H_{i} \cup P_{i}$.
- $G=H_{m} \cup P_{m}$.

Use different colors to described your H_{1} and P_{i} 's.

Solution.

2. [1pt] Find a connected plane graph G_{1} and a face f_{1} of G_{1} such that the boundary of f_{1} is not a cycle. Find a 2-connected plan graph G_{2} and a face f_{2} of G_{2} such that the boundary of f_{2} is not a non-separating cycle.

Solution.

Questions to ponder:

1. Pick a graph that is 2 -connected and two vertices x and y on it. Find two internal vertex-disjoint paths connecting x and y.
2. Pick a graph that is 3-connected and two vertices x and y on it. Find three internal vertex-disjoint paths connecting x and y.
3. Is the Petersen graph 2-connected or 3-connected?
4. Present the proof of Proposition 3.1.1 (in your own words). You are encouraged to write down the proof first.
5. Practice your $\mathrm{T}_{\mathrm{E}} \mathrm{Xnique}$ at https://texnique. $\mathrm{xyz} /$.
6. Let G be a graph. Google how to use SageMath to test if G is planar or not; moreover, use SageMath to draw G on \mathbb{R}^{2} without crossing. You may use SageCell to try your code.
