Math589 Homework 2

1. [1pt] A graph parameter $\xi(G)$ is called minor monotone if $\xi(G) \leqslant \xi(H)$ whenever G is a minor of H. Let $n(G)$ be the number of vertices of $G, m(G)$ the number of edges of G, and $c(G)$ the number of components of G. For what A, B, C is the linear combination

$$
(\mathrm{An}+\mathrm{Bm}+\mathrm{Cc})(\mathrm{G}):=\mathrm{An}(\mathrm{G})+\mathrm{Bm}(\mathrm{G})+\mathrm{Cc}(\mathrm{G})
$$

minor monotone?

Solution.

2. [1pt] Let

$$
X=\left\{\mathbf{x} \in \mathbb{R}^{2}:\|\mathbf{x}\|=1\right\}
$$

be the unit circle. Show that X separates \mathbb{R}^{2}. That is, suppose there is a curve (continuous function) $\phi:[0,1] \rightarrow P \subseteq \mathbb{R}^{2}$ such that $\phi(0)$ is inside the circle and $\phi(1)$ is outside the circle, then there must be a point $\phi(c), c \in(0,1)$, that is on the circle X.

Solution.

Questions to ponder:

1. Draw $\mathrm{K}_{3,5}$ on a torus.
2. Show that the y-axis separates \mathbb{R}^{2}.
3. Show that any triangle separates \mathbb{R}^{2}.
4. Let $X \subseteq \mathbb{R}^{2}$ be a compact set. Show that each equivalence class of $\mathbb{R}^{2} \backslash X$ under the relation $\mathbf{a} \sim \mathbf{b}$ if there is a polygonal arc in $\mathbb{R}^{2} \backslash X$ connecting \mathbf{a} and \mathbf{b} is open.
5. Practice your T_{E} Xnique at https://texnique. $x y z /$.
