Math589 Homework 15

1. [1pt] Recall that if $f\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}, \ldots, f_{m}\right)$, then

$$
\frac{d f}{d\left(x_{1}, \ldots, x_{n}\right)}=\left[\begin{array}{cccc}
\frac{d f_{1}}{d x_{1}} & \frac{d f_{1}}{d x_{2}} & \cdots & \frac{d f_{1}}{d x_{n}} \\
\vdots & \vdots & & \vdots \\
\frac{d f_{m}}{d x_{1}} & \frac{d f_{m}}{d x_{2}} & \cdots & \frac{d f_{m}}{d x_{n}}
\end{array}\right]
$$

Let $\mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{y} \in \mathbb{R}^{m}$ be two vectors and A an $m \times n$ matrix. Define $f(\mathbf{x})=A \mathbf{x}+\mathbf{y}$. Find $\frac{\mathrm{df}}{\mathrm{dx}}$.

Solution.

2. [1pt] Let A be the adjacency matrix of $K_{1,4}$. Determine whether A has the strong Arnold property or not. If yes, verify it; if no, find a matrix X such that

$$
A \circ X=I \circ X=A X=O
$$

Solution.

Questions to ponder:

1. Pick a symmetric matrix and check if it has the strong Arnold property or not.
2. Let $f(\mathbf{x})=A \mathbf{x}+\mathbf{y}$. Find $\frac{d f}{d y}$.
3. Show that the zero forcing number Z is not minor-monotone.
4. Show that every matrix of $\mathrm{K}_{1,3}$ has the strong Arnold property.
5. Show that every matrix of C_{4} has the strong Arnold property.
6. Practice your T_{E} Xnique at https://texnique. $\mathrm{xyz} /$.
