Math589 Homework 14

1. [1pt] Find a matrix $A \in S(P_3)$ such that spec $(A) = \{1, 3, 5\}$ and spec $(A(1)) = \{2, 4\}$. Solution.

2. [1pt] Let

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}.$$

 $L^{\cdot} \cdot \cdot \cdot \cdot \cdot J$ Find a basis of span{I, A, A², A³}. Then write A⁴ as a linear combination of your basis.

Solution.

Questions to ponder:

- 1. Find a 2×2 real symmetric matrix whose spectrum is $\{1, 3\}$.
- 2. Let $A = \begin{bmatrix} x & z \\ z & y \end{bmatrix}$. Find equations on x, y, z such that A has the spectrum {1,3}. Can you draw the solutions of the equations on the 3-dimensional space? Can you parametrize the curver?
- 3. Let $f(x, y, z) = x^2 + y^2 + z^2$. Find $\frac{df}{dx}$.
- 4. Let f(x, y, z) = (xy, yz, zx). Find $\frac{df}{d(x, y, z)}$.
- 5. Determine whether the unit sphere $x^2 + y^2 + z^2 = 1$ and the plane x + y + z = 0 intersect transversally at the point (1, 0, 0).
- 6. Determine whether the unit sphere $x^2 + y^2 + z^2 = 1$ and the plane $x + y + z = \frac{3}{\sqrt{3}}$ intersect transversally at the point $(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})$.
- 7. Practice your T_EXnique at https://texnique.xyz/.