## Math589 Homework 13

1. [1pt] Let $G=P_{3}$. There are 8 loop configurations on $P_{3}$. (Each vertex can have a loop or have no loop on it.) For each of them, find its zero forcing number.

Solution.
2. [1pt] Let

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

Is $A$ a positive semidefinite matrix? If yes, prove it; if no, find a vector $\mathbf{x} \in \mathbb{R}^{3}$ such that $\mathbf{x}^{\top} \mathrm{A} \mathbf{x}<0$.

Solution.

Questions to ponder:

1. Let $G=P_{n}$. Which configuration $\mathfrak{G}$ of $G$ has $Z(\mathfrak{G})=0$ ?
2. Let $G=K_{1, n-1}$. Which configuration $\mathfrak{G}$ of $G$ has $Z(\mathfrak{G})=0$ ?
3. Use SageMath to find a graph $G$ with $\widehat{Z}(G) \leqslant Z(G)$.
4. Find a graph $G$ and its vertex $v$ such that $Z(G)-Z(G-v)=1$. Do the same for $Z(G)-Z(G-v)=0$ or -1 .
5. Find a graph $G$ and its edge $e$ such that $Z(G)-Z(G-e)=1$. Do the same for $Z(G)-Z(G-e)=0$ or -1 .
6. Practice your $\mathrm{T}_{\mathrm{E}}$ Xnique at https://texnique. $\mathrm{xyz} /$.
