Math589 Homework 12

1. [1pt] Let G be the graph below. Recall that a fort on G is a subset $S \subseteq V(G)$ of vertices such that for any $x \in V(G) \setminus S$, the number of neighbors of x in S is either zero or at least two. Find all forts on G.

Solution.

2. [1pt] Let G be a graph. Show that B is a zero forcing set of G if and only if $B \cap S \neq \emptyset$ for all forts S of G.

Solution.

Questions to ponder:

- 1. Show that $\delta(G) \leq Z(G)$ for all graph G.
- 2. Show that $|V(H)| Z(H) \leq |V(G)| Z(G)$ whenever H is an induced subgraph of G.
- 3. Show that for graphs without isolated vertices, $Z(G) \leq |V(G)| \alpha(G)$, where $\alpha(G)$ is the independence number.
- 4. Let G_n be the graph obtained from C_n , the cycle on n vertices, by adding a leaf to each of the vertices on C_n . Find $Z(G_n)$.
- 5. Let G_1 and G_2 be two graphs. Pick a vertex on G_1 and a vertex on G_2 , then label both of them as ν . Let G be the graph obtained from $G_1 \cup G_2$ by identifying the two vertices labeled as ν .
 - (a) $Z(G) \leq Z(G_1) + Z(G_2) + 1$
 - (b) $Z(G) \leq Z(G_1 \nu) + Z(G_2 \nu) + 1$
 - (c) Find G_1 , G_2 , v such that both of the inequalities are not tight.
- 6. Practice your TEXnique at https://texnique.xyz/.