Math589 Homework 12

1. [1pt] Let G be the graph below. Recall that a fort on G is a subset $S \subseteq V(G)$ of vertices such that for any $x \in V(G) \backslash S$, the number of neighbors of x in S is either zero or at least two. Find all forts on G.

Solution.

2. [1pt] Let G be a graph. Show that B is a zero forcing set of G if and only if $B \cap S \neq \emptyset$ for all forts S of G.

Solution.

Questions to ponder:

1. Show that $\delta(G) \leqslant Z(G)$ for all graph G.
2. Show that $|V(H)|-Z(H) \leqslant|V(G)|-Z(G)$ whenever H is an induced subgraph of G.
3. Show that for graphs without isolated vertices, $Z(G) \leqslant|V(G)|-\alpha(G)$, where $\alpha(G)$ is the independence number.
4. Let G_{n} be the graph obtained from C_{n}, the cycle on n vertices, by adding a leaf to each of the vertices on C_{n}. Find $Z\left(G_{n}\right)$.
5. Let G_{1} and G_{2} be two graphs. Pick a vertex on G_{1} and a vertex on G_{2}, then label both of them as v. Let G be the graph obtained from $G_{1} \cup G_{2}$ by identifying the two vertices labeled as v.
(a) $\mathrm{Z}(\mathrm{G}) \leqslant \mathrm{Z}\left(\mathrm{G}_{1}\right)+\mathrm{Z}\left(\mathrm{G}_{2}\right)+1$
(b) $Z(G) \leqslant Z\left(G_{1}-v\right)+Z\left(G_{2}-v\right)+1$
(c) Find $\mathrm{G}_{1}, \mathrm{G}_{2}, v$ such that both of the inequalities are not tight.
6. Practice your T_{E} Xnique at https://texnique. xyz/.
