Math589 Homework 11

1. [1pt] Let G be a graph and $\mathcal{S}(G)$ the family of matrices associated with G. Recall that the maximum nullity of G is

$$
M(G)=\max \{\operatorname{null}(A): A \in \mathcal{S}(G)\}
$$

Now we define the maximum multiplicity of G as

$$
M_{e}(G)=\max \left\{\operatorname{mul}_{\lambda}(A): A \in \mathcal{S}(G), \lambda \in \operatorname{spec}(A)\right\}
$$

Here $\operatorname{null}(A)$ is the nullity of A and $\operatorname{mul}_{\lambda}(A)$ is the multiplicity of λ as an eigenvalue of A. Show that $M(G)=M_{e}(G)$ for every graph G.

Solution.
2. [1pt] Characterize the graphs G with $M(G)=n$ and the graphs with $M(G)=n-1$, where n is the number of vertices.

Solution.

Questions to ponder:

1. Pick a tree on at least 10 vertices. Find its zero forcing number.
2. Compute the maximum nullity and the zero forcing number of the following graphs.
0

3. Find a graph G with $P(G)<M(G)$, where $P(G)$ is the path cover number.
4. Find a graph G with $M(G)<P(G)$, where $P(G)$ is the path cover number.
5. Practice your $\mathrm{T}_{\mathrm{E}} X$ nique at https://texnique. $\mathrm{xyz} /$.
