Math589 Homework 10

1. [1pt] Let G be a graph with a cut vertex v, whose removal results in a partition $\mathrm{V}(\mathrm{G})-v=\mathrm{X} \cup \mathrm{Y}$ such that there is no edges between X and Y . Let $\mathrm{G}_{1}=\mathrm{G}[\mathrm{X} \cup\{v\}]$ and $G_{2}=G[Y \cup\{v\}]$. Show that $\mathcal{C}(G)$ is the direct product of $\mathcal{C}\left(G_{1}\right)$ and $\mathcal{C}\left(G_{2}\right)$.

Solution.

2. [1pt] Let G be a graph and e an edge of G. Let G_{e} be the subdivision of G at edge e. Show that $\mathcal{C}(G)$ has a sparse basis if and only if $\mathcal{C}\left(G_{e}\right)$ has a sparse basis.

Solution.

Questions to ponder:

1. Let G be the complete subdivision of K_{5} (subdivide every edge exactly once). Use the counting argument to show that $\mathcal{C}(G)$ has no sparse basis.
2. Let G be the complete subdivision of $\mathrm{K}_{3,3}$ (subdivide every edge exactly once). Use the counting argument to show that $\mathcal{C}(G)$ has no sparse basis.
3. Let G be the Petersen graph. Use the counting arguement to show that $\mathcal{C}(G)$ has no sparse basis.
4. Practice your T_{E} Xnique at https://texnique. xyz /.
