\qquad學號 Student ID \＃： \qquad
MATH 203：Discrete Mathematics I

Solve the recurrence relation

$$
\begin{gathered}
a_{n}=(-5) a_{n-1}+(-4) a_{n-2} \text { for } n \geq 2, \\
a_{0}=3, a_{1}=15 .
\end{gathered}
$$

Write your solution in the form of

$$
a_{n}=c_{1} \cdot r_{1}^{n}+c_{2} \cdot r_{2}^{n} .
$$

Check code $=\left(c_{1}+c_{2}+r_{1}+r_{2}\right) \bmod 10$

Solution．

\qquad學號 Student ID \＃： \qquad
Quiz 3
MATH 203：Discrete Mathematics I

Solve the recurrence relation

$$
\begin{gathered}
a_{n}=(-2) a_{n-1}+(8) a_{n-2} \text { for } n \geq 2, \\
a_{0}=-17, a_{1}=20 .
\end{gathered}
$$

Write your solution in the form of

$$
a_{n}=c_{1} \cdot r_{1}^{n}+c_{2} \cdot r_{2}^{n} .
$$

Check code $=\left(c_{1}+c_{2}+r_{1}+r_{2}\right) \bmod 10$

Solution．

\qquad學號 Student ID \＃： \qquad
MATH 203：Discrete Mathematics I

Solve the recurrence relation

$$
\begin{gathered}
a_{n}=(2) a_{n-1}+(15) a_{n-2} \text { for } n \geq 2, \\
a_{0}=6, a_{1}=-42 .
\end{gathered}
$$

Write your solution in the form of

$$
a_{n}=c_{1} \cdot r_{1}^{n}+c_{2} \cdot r_{2}^{n} .
$$

Check code $=\left(c_{1}+c_{2}+r_{1}+r_{2}\right) \bmod 10$

Solution．

\qquad學號 Student ID \＃： \qquad
MATH 203：Discrete Mathematics I

Solve the recurrence relation

$$
\begin{gathered}
a_{n}=(-1) a_{n-1}+(12) a_{n-2} \text { for } n \geq 2, \\
a_{0}=-4, a_{1}=9 .
\end{gathered}
$$

Write your solution in the form of

$$
a_{n}=c_{1} \cdot r_{1}^{n}+c_{2} \cdot r_{2}^{n} .
$$

Check code $=\left(c_{1}+c_{2}+r_{1}+r_{2}\right) \bmod 10$

Solution．

\qquad學號 Student ID \＃： \qquad
MATH 203：Discrete Mathematics I

Solve the recurrence relation

$$
\begin{gathered}
a_{n}=(7) a_{n-1}+(-10) a_{n-2} \text { for } n \geq 2, \\
a_{0}=8, a_{1}=10 .
\end{gathered}
$$

Write your solution in the form of

$$
a_{n}=c_{1} \cdot r_{1}^{n}+c_{2} \cdot r_{2}^{n} .
$$

Check code $=\left(c_{1}+c_{2}+r_{1}+r_{2}\right) \bmod 10$

Solution．

\qquad學號 Student ID \＃： \qquad
MATH 203：Discrete Mathematics I

Solve the recurrence relation

$$
\begin{gathered}
a_{n}=(3) a_{n-1}+(4) a_{n-2} \text { for } n \geq 2, \\
a_{0}=1, a_{1}=44 .
\end{gathered}
$$

Write your solution in the form of

$$
a_{n}=c_{1} \cdot r_{1}^{n}+c_{2} \cdot r_{2}^{n} .
$$

Check code $=\left(c_{1}+c_{2}+r_{1}+r_{2}\right) \bmod 10$

Solution．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
MATH 203：Discrete Mathematics I

Solve the recurrence relation

$$
\begin{gathered}
a_{n}=(-2) a_{n-1}+(15) a_{n-2} \text { for } n \geq 2, \\
a_{0}=-5, a_{1}=33 .
\end{gathered}
$$

Write your solution in the form of

$$
a_{n}=c_{1} \cdot r_{1}^{n}+c_{2} \cdot r_{2}^{n} .
$$

Check code $=\left(c_{1}+c_{2}+r_{1}+r_{2}\right) \bmod 10$

Solution．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
MATH 203：Discrete Mathematics I

Solve the recurrence relation

$$
\begin{gathered}
a_{n}=(0) a_{n-1}+(9) a_{n-2} \text { for } n \geq 2, \\
a_{0}=-1, a_{1}=-15 .
\end{gathered}
$$

Write your solution in the form of

$$
a_{n}=c_{1} \cdot r_{1}^{n}+c_{2} \cdot r_{2}^{n} .
$$

Check code $=\left(c_{1}+c_{2}+r_{1}+r_{2}\right) \bmod 10$

Solution．

\qquad學號 Student ID \＃： \qquad
MATH 203：Discrete Mathematics I

Solve the recurrence relation

$$
\begin{gathered}
a_{n}=(1) a_{n-1}+(2) a_{n-2} \text { for } n \geq 2, \\
a_{0}=15, a_{1}=0 .
\end{gathered}
$$

Write your solution in the form of

$$
a_{n}=c_{1} \cdot r_{1}^{n}+c_{2} \cdot r_{2}^{n} .
$$

Check code $=\left(c_{1}+c_{2}+r_{1}+r_{2}\right) \bmod 10$

Solution．

\qquad學號 Student ID \＃： \qquad
MATH 203：Discrete Mathematics I

Solve the recurrence relation

$$
\begin{gathered}
a_{n}=(7) a_{n-1}+(-12) a_{n-2} \text { for } n \geq 2, \\
a_{0}=0, a_{1}=-9 .
\end{gathered}
$$

Write your solution in the form of

$$
a_{n}=c_{1} \cdot r_{1}^{n}+c_{2} \cdot r_{2}^{n} .
$$

Check code $=\left(c_{1}+c_{2}+r_{1}+r_{2}\right) \bmod 10$

Solution．

