\qquad
學號 Student ID \＃： \qquad

Lecturer：Jephian Lin 林晉宏
Contents：cover page， 5 pages of questions， score page at the end
To be answered：on the test paper
Duration： 110 minutes
Total points： $\mathbf{2 0}$ points +2 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－可用中文或英文作答

1．Let G be the graph below．Answer the following questions and provide your reasons．［Hint：This graph is composed of the vertices and the edges of an icosahedron（正二十面體）．］

（a）$[1 \mathrm{pt}]$ Is G a bipartite graph？
（b）$[1 \mathrm{pt}]$ Is there an Eulerian circuit on G ？
（c）$[1 \mathrm{pt}]$ Is there a Hamiltonian cycle on G ？
（d）［1pt］Is G planar？
（e）［1pt］Is G 4－colorable？
2. Let (X, R) be the poset with the Hasse diagram below. Answer the following questions and provide your reasons.

(a) $[1 \mathrm{pt}]$ Find a linear extension of (X, R).
(b) [1pt] Find a total order on $\{1, \ldots, 8\}$ that is not a linear extension of (X, R).
(c) [1pt] Is there a chain cover of (X, R) of size 2 ?
(d) [1pt] Is there an antichain cover of (X, R) of size 5 ?
(e) $[1 \mathrm{pt}]$ Is (X, R) an interval poset?
3. [5pt] Determine whether the graph below is a comparability graph or not and provide your reasons.

4. [5pt] Let (X, R) be a poset. Recall that

$$
D(x)=\{y \in X: y \preceq x \text { in } R, y \neq x\}
$$

for any $x \in X$ and $\mathbf{2}+\mathbf{2}$ is the poset whose Hasse diagram is as below.

$$
0
$$

Show that the following statements are equivalent:
(a) (X, R) contains $\mathbf{2}+\mathbf{2}$ as a subposet.
(b) There are two elements $x_{1}, x_{2} \in X$ such that $D\left(x_{1}\right) \backslash D\left(x_{2}\right) \neq \emptyset$ and $D\left(x_{2}\right) \backslash D\left(x_{1}\right) \neq \emptyset$.
5. [extra 2 pt] Let G be the graph below. Find an order of the vertices (e.g., $8,7, \ldots, 1$) such that the greedy coloring algorithm using this order needs 4 colors.

[END]

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	2	
Total	$20(+2)$	

