Math589 Midterm2

6 questions, 24 total points

Note: Use other papers to answer the problems. Remember to write down your **name** and your **student ID #**.

[4pt] Show that the Kneser graph K_{7,3} is not 2-colorable.
Solution. It is enough to show that K_{7,3} contains an odd cycle as the following.

$$\{1, 2, 3\} \rightarrow \{4, 5, 6\} \rightarrow \{1, 2, 7\} \rightarrow \{3, 4, 5\}$$
$$\{1, 6, 7\} \rightarrow \{2, 3, 4\} \rightarrow \{5, 6, 7\} \rightarrow \{1, 2, 3\}$$

2. [4pt] Let (X, O) be a topological space with

$$X = \{1, 2, 3, 4, 5\}$$
 and $\mathcal{O} = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}\}.$

Let $Y = \{1\}$.

- (a) Describe all closed sets on X.
- (b) Find the closure cl(Y).
- (c) Find the boundary ∂Y .
- (d) Find the interior int(Y) of Y.

Solution. The closed sets are

$$\emptyset, X, \{2, 3, 4, 5\}, \{1, 3, 4, 5\}, \{3, 4, 5\}.$$

The closure is $cl(Y) = \{1, 3, 4, 5\}$. The boundary is $\partial Y = \{3, 4, 5\}$. And the interior is $int(Y) = \{1\}$.

3. [4pt] Let

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2\\3\\5 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2\\4\\10 \end{bmatrix}, \text{ and } \mathbf{v}_4 = \begin{bmatrix} 2\\5\\17 \end{bmatrix}.$$

Show that $\{v_1, v_2, v_3, v_3\}$ is affinely independent.

Solution. It is enough to show that $\{v_2 - v_1, v_3 - v_1, v_4 - v_1\}$ is linearly independent. But this is easy since

1	1	1
2	3	4
4	9	16

is a Vandermonde matrix and is nonsingular.

4. [4pt] Let $[3] = \{1, 2, 3\}$. For any subset $\alpha \subseteq [3]$, the characteristic vector ϕ_{α} of α is a vector in \mathbb{R}^3 whose i-th entry is 1 if $i \in \alpha$ and 0 otherwise. Let π be a permutation on $\{1, 2, 3\}$. Define a simplex

$$S_{\pi} = \operatorname{conv}(\{\phi_{\emptyset}, \phi_{\{\pi(1)\}}, \phi_{\{\pi(1), \pi(2)\}}, \phi_{\{\pi(1), \pi(2), \pi(3)\}}\}).$$

Then the cube enclosed by

 $0 \leq x_1, x_2, x_3 \leq 1$

is the union of S_{π} for all permutation π . (You do not have to show this.) Let $\mathbf{v} = (0.2, 0.7, 0.3)^{\top} \in \mathbb{R}^3$ be a point in the cube. Which simplex S_{π} does \mathbf{v} belongs to?

Solution. Since 0.7 > 0.3 > 0.2, the point **v** belongs to S_{π} with

$$\pi(1) = 2, \pi(2) = 3, \pi(3) = 1.$$

5. [4pt] What is a simplex? What is a simplicial complex?

Solution. A simplex is the convex hull of a finite affinely independent set. A simplicial complex Δ is a collection of simplices such that:

- (a) if $\sigma \in \Delta$, then any face of σ is also in Δ , and
- (b) if $\sigma_1, \sigma_2 \in \Delta$, then $\sigma_1 \cap \sigma_2$ is a face of both σ_1 and σ_2 .

6. [4pt] Let C_4 be the cycle on 4 vertices. Let L be the Laplacian matrix of C_4 . Find the eigenvalues and an eigenbasis of L.

Solution. The Laplacian matrix is

$$L = \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix}.$$

By direct computation, the eigenvalues are 0, 2, 2, 4. The the columns of

$$\begin{bmatrix} 1 & -1 & 0 & 1 \\ 1 & 0 & -1 & -1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & -1 \end{bmatrix}$$

form an eigenbasis for L.