Math589 Midterm2

6 questions, 24 total points
Note: Use other papers to answer the problems. Remember to write down your name and your student ID \#.

1. [4pt] Show that the Kneser graph $\mathrm{K}_{7,3}$ is not 2-colorable.

Solution. It is enough to show that $K_{7,3}$ contains an odd cycle as the following.

$$
\begin{aligned}
& \{1,2,3\} \rightarrow\{4,5,6\} \rightarrow\{1,2,7\} \rightarrow\{3,4,5\} \\
& \{1,6,7\} \rightarrow\{2,3,4\} \rightarrow\{5,6,7\} \rightarrow\{1,2,3\}
\end{aligned}
$$

2. [4pt] Let (X, O) be a topological space with

$$
X=\{1,2,3,4,5\} \text { and } \mathcal{O}=\{\emptyset, X,\{1\},\{2\},\{1,2\}\} .
$$

Let $Y=\{1\}$.
(a) Describe all closed sets on X .
(b) Find the closure $\mathrm{cl}(\mathrm{Y})$.
(c) Find the boundary ∂Y.
(d) Find the interior $\operatorname{int}(\mathrm{Y})$ of Y .

Solution. The closed sets are

$$
\emptyset, X,\{2,3,4,5\},\{1,3,4,5\},\{3,4,5\} .
$$

The closure is $\mathrm{cl}(\mathrm{Y})=\{1,3,4,5\}$. The boundary is $\partial \mathrm{Y}=\{3,4,5\}$. And the interior is $\operatorname{int}(Y)=\{1\}$.
3. $[4 \mathrm{pt}]$ Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
2 \\
4 \\
10
\end{array}\right], \text { and } \mathbf{v}_{4}=\left[\begin{array}{c}
2 \\
5 \\
17
\end{array}\right] .
$$

Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{3}\right\}$ is affinely independent.
Solution. It is enough to show that $\left\{\mathbf{v}_{2}-\mathbf{v}_{1}, \mathbf{v}_{3}-\mathbf{v}_{1}, \mathbf{v}_{4}-\mathbf{v}_{1}\right\}$ is linearly independent. But this is easy since

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 4 \\
4 & 9 & 16
\end{array}\right]
$$

is a Vandermonde matrix and is nonsingular.
4. [4pt] Let $[3]=\{1,2,3\}$. For any subset $\alpha \subseteq[3]$, the characteristic vector ϕ_{α} of α is a vector in \mathbb{R}^{3} whose i-th entry is 1 if $i \in \alpha$ and 0 otherwise. Let π be a permutation on $\{1,2,3\}$. Define a simplex

$$
S_{\pi}=\operatorname{conv}\left(\left\{\phi_{\emptyset}, \phi_{\{\pi(1)\}}, \phi_{\{\pi(1), \pi(2)\}}, \phi_{\{\pi(1), \pi(2), \pi(3)\}}\right\}\right) .
$$

Then the cube enclosed by

$$
0 \leqslant x_{1}, x_{2}, x_{3} \leqslant 1
$$

is the union of S_{π} for all permutation π. (You do not have to show this.) Let $\mathbf{v}=(0.2,0.7,0.3)^{\top} \in \mathbb{R}^{3}$ be a point in the cube. Which simplex S_{π} does \mathbf{v} belongs to?
Solution. Since $0.7>0.3>0.2$, the point \mathbf{v} belongs to S_{π} with

$$
\pi(1)=2, \pi(2)=3, \pi(3)=1 .
$$

5. [4pt] What is a simplex? What is a simplicial complex?

Solution. A simplex is the convex hull of a finite affinely independent set. A simplicial complex Δ is a collection of simplices such that:
(a) if $\sigma \in \Delta$, then any face of σ is also in Δ, and
(b) if $\sigma_{1}, \sigma_{2} \in \Delta$, then $\sigma_{1} \cap \sigma_{2}$ is a face of both σ_{1} and σ_{2}.
6. [4pt] Let C_{4} be the cycle on 4 vertices. Let L be the Laplacian matrix of C_{4}. Find the eigenvalues and an eigenbasis of L.
Solution. The Laplacian matrix is

$$
\mathrm{L}=\left[\begin{array}{cccc}
2 & -1 & 0 & -1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right] .
$$

By direct computation, the eigenvalues are $0,2,2,4$. The the columns of

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
1 & 0 & -1 & -1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & -1
\end{array}\right]
$$

form an eigenbasis for L.

