Math589 Midterm1

6 questions, 24 total points

Note: Use other papers to answer the problems. Remember to write down your name and your student ID \#.

1. [4pt] Show that every simple graph G must have two vertices whose degrees are the same.
Solution. Let G be a simple graph on n vertices. The degree of a vertex can be $0,1, \ldots, n-1$. Suppose the degree of every vertex is different. Since there are n vertices, there is exactly one vertex of degree k for each $k=0,1, \ldots, n-1$. Let u be the vertex of degree 0 . Then u is not adjacent to any vertex. Let v be the vertex of degree $n-1$. Then v is adjacent to any vertex. This is a contradiction since u and v can not occur simultaneously.
2. [4pt] Suppose G is a connected simple graph on n vertices and m edges. Show that $m \geqslant n-1$.
Solution. We prove the contrapositive statement. Start from n isolated vertices. (That is, a graph on n vertices without any edge.) When an edge is added, it at most combines two components into one component. This operation decreases the number of components by at most one. If $m \leqslant n-2$ edges were added, then the number of components is at least $n-m \geqslant 2$, so G is not connected.
3. [4pt] Find all connected graphs on 5 vertices. How many of them?

Solution. There are 21 connected graphs on 5 vertices.
4. [4pt] The Hamming distance between two 0,1 -strings is the number of different digits. For example, the Hamming distance between 010101 and 111000 is 3. The hypercube H_{d} of dimension d has vertices as all 0,1 -strings of length d, and two vertices are adjacent if the Hamming distance of the strings is 1 . The graphs below illustrate H_{2} and H_{3}. Find a partition $X \dot{\cup} Y=V\left(H_{d}\right)$ so that every edge of H_{d} is in between X and Y.

Solution. Partition $V\left(H_{d}\right)$ into two parts $V_{\text {odd }}$ and $V_{\text {even, }}$ where $V_{\text {odd }}$ is all the 0,1 strings in $V\left(H_{d}\right)$ with odd number of ones and $V_{\text {even }}$ is all the strings with even number of ones. Thus, all edges are between these two sets.
5. [4pt] Let C_{n} be the cycle graph on n vertices and L_{n} the Laplacian matrix of C_{n}. Recall that $L_{n}(1,1)$ is the matrix obtained from L_{n} by removing the first row and the first column. Compute $\left|\operatorname{det} \mathrm{L}_{n}(1,1)\right|$.
Solution. The cycle graph C_{n} has n spanning trees, so $\left|\operatorname{det} L_{n}(1,1)\right|=n$ by the matrix-tree theorem.
6. Let G be the graph below. Find the chromatic number $k=\chi(G)$ and give a proper k -coloring of G .

Solution. It contains an odd cycle, so $\chi(G) \geqslant 3$. And it has a 3-coloring as below. Therefore, $\chi(G)=3$.

