Math589 Homework 9

Note: To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. Let F be a subset of $\left\{e_{1},-e_{1}, \ldots, e_{d},-e_{d}\right\}$. Show that $\operatorname{conv}(F)$ is a proper face of the crosspolytope if and only if there is no i such that both e_{i} and $-e_{i}$ are in F.

Solution. Suppose $e_{i},-e_{i} \in F$. Let $h: v \cdot x=b$ be a hyperplane with $v, x \in \mathbb{R}^{d}$ and $\mathrm{b} \in \mathbb{R}$. Let $v=\left(v_{1}, \ldots, v_{\mathrm{d}}\right)$. If h passes through the two points e_{i} and $-e_{i}$, then $v_{i}=-v_{i}=\mathrm{b}$. Therefore, $v_{i}=0=\mathrm{b}$. Without loss of the generality, we may assume that $v_{1} \neq 0$. Thus, e_{1} and $-e_{1}$ are on the different sides of h, so $\operatorname{conv}(F)$ is not a proper face of the crosspolytope.
Suppose there is no i such that $e_{i},-e_{i} \in F$. Let v be the sum of all vectors in F. Then $v \cdot e=1$ for all $e \in F$. For all $e \in\left\{e_{1},-e_{1}, \ldots, e_{d},-e_{d}\right\}$ other than those in $F, v \cdot e=0$. So conv (F) is a proper face of the crosspolytope.
2. Let

$$
v_{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], v_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], v_{3}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \text { and } v_{4}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] .
$$

Let Δ be the simplicial complex composed of the simplices

$$
\operatorname{conv}\left(\left\{v_{0}, v_{1}, v_{2}\right\}\right), \operatorname{conv}\left(\left\{v_{0}, v_{2}, v_{3}\right\}\right), \operatorname{conv}\left(\left\{v_{0}, v_{3}, v_{4}\right\}\right), \operatorname{conv}\left(\left\{v_{0}, v_{4}, v_{1}\right\}\right),
$$

and their faces. Define $f: V(\Delta) \rightarrow \mathbb{R}^{2}$ by

$$
\mathrm{f}\left(v_{0}\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \mathrm{f}\left(v_{1}\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathrm{f}\left(v_{2}\right)=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \mathrm{f}\left(v_{3}\right)=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right], \text { and } \mathrm{f}\left(v_{4}\right)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

Find a exact formula for the affine extension $\|f\|$ of f. That is, what is

$$
\|f\|\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) ?
$$

Solution. This one is easy. Graphically, $\|f\|$ is the 45°-rotation along with the $\sqrt{2}$ scaling. Therefore,

$$
\|f\|\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\sqrt{2}\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

