Math589 Homework 9

Note: To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. Let F be a subset of $\left\{e_{1},-e_{1}, \ldots, e_{d},-e_{d}\right\}$. Show that $\operatorname{conv}(F)$ is a proper face of the crosspolytope if and only if there is no i such that both e_{i} and $-e_{i}$ are in F.
2. Let

$$
v_{0}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], v_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], v_{3}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \text { and } v_{4}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] .
$$

Let Δ be the simplicial complex composed of the simplices

$$
\operatorname{conv}\left(\left\{v_{0}, v_{1}, v_{2}\right\}\right), \operatorname{conv}\left(\left\{v_{0}, v_{2}, v_{3}\right\}\right), \operatorname{conv}\left(\left\{v_{0}, v_{3}, v_{4}\right\}\right), \operatorname{conv}\left(\left\{v_{0}, v_{4}, v_{1}\right\}\right)
$$

and their faces. Define $f: V(\Delta) \rightarrow \mathbb{R}^{2}$ by

$$
f\left(v_{0}\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right], f\left(v_{1}\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], f\left(v_{2}\right)=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], f\left(v_{3}\right)=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right], \text { and } f\left(v_{4}\right)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

Find a exact formula for the affine extension $\|f\|$ of f. That is, what is

$$
\|f\|\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) ?
$$

