## Math589 Homework 8

Note: To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. Let G be the graph drawn below. Find a balanced partition

$$
\mathrm{V}(\mathrm{G})=\mathrm{X}_{1} \cup \mathrm{X}_{2} \text { with }\left|\mathrm{X}_{1}\right|=\left|\mathrm{X}_{2}\right|
$$

that minimizes the number of edges between $X_{1}$ and $X_{2}$.


Solution. For example, take

$$
X_{1}=\{3,4,5,6,7\} \text { and } X_{2}=\{1,2,8,9,10\}
$$

2. Let G be the same graph as in Problem 1. Let $\mathbf{v}$ be the eigenvector corresponding to the second (smallest) eigenvalue. Find

$$
\begin{aligned}
\operatorname{supp}_{+}(\mathbf{v}) & :=\left\{i \in \mathrm{~V}(\mathrm{G}):(\mathbf{v})_{i}>0\right\}, \\
\operatorname{supp}_{-}(\mathbf{v}) & :=\left\{i \in \mathrm{~V}(\mathrm{G}):(\mathbf{v})_{i}<0\right\}, \\
\operatorname{supp}_{0}(\mathbf{v}) & :=\left\{i \in \mathrm{~V}(\mathrm{G}):(\mathbf{v})_{i}=0\right\} .
\end{aligned}
$$

You may use a computer if necessary.
Solution. By Sage, the eigenvector is

$$
\left[\begin{array}{c}
1 \\
-2.200261711964298 ? \\
-4.877989230088837 ? \\
-6.397256299602498 ? \\
-6.397256299602498 ? \\
-4.877989230088837 ? \\
-2.200261711964298 ? \\
7.163036132758463 ? \\
9.39398917527641 ? \\
9.39398917527641 ?
\end{array}\right]
$$

or its multiple. Therefore,

$$
\begin{aligned}
\operatorname{supp}_{+}(\mathbf{v}) & =\{1,8,9,10\} \\
\operatorname{supp}_{-}(\mathbf{v}) & =\{2,3,4,5,6,7\} \\
\operatorname{supp}_{0}(\mathbf{v}) & =\emptyset
\end{aligned}
$$

