Math589 Homework 7

Note: To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. Let $[n] = \{1, ..., n\}$. For any subset $\alpha \subseteq [n]$, the characteristic vector ϕ_{α} of α is a vector in \mathbb{R}^n whose i-th entry is 1 if $i \in \alpha$ and 0 otherwise. Show that $\{\phi_{\emptyset}, \phi_{[1]}, ..., \phi_{[n]}\}$ is affinely independent.

Solution. The set

$$\{\varphi_{[1]}-\varphi_{\emptyset},\ldots,\varphi_{[n]}-\varphi_{\emptyset}\}=\{\varphi_{[1]},\ldots,\varphi_{[n]}\}$$

is linearly independent.

2. Let the characteristic vectors be defined as in the previous question with n = 3. Let π be a permutation on {1, 2, 3}. Define a simplex

$$S_{\pi} = \operatorname{conv}(\{\phi_{\emptyset}, \phi_{\{\pi(1)\}}, \phi_{\{\pi(1), \pi(2)\}}, \phi_{\{\pi(1), \pi(2), \pi(3)\}}\}).$$

We showed that S_{π} is a simplex for $\pi = id_{[3]}$. Indeed, S_{π} is a simplex for any permutation π . (You do not have to show this.) Show that the cubic enclosed by

$$0 \leq x_1, x_2, x_3 \leq 1$$

is the union of S_{π} for all permutation π .

Solution. Let (x_1, x_2, x_3) be a point in the cube. There is a permutation π such that

$$\mathbf{x}_{\pi(1)} \geqslant \mathbf{x}_{\pi(2)} \geqslant \mathbf{x}_{\pi(3)}.$$

If x_1, x_2, x_3 are distinct, then this permutation is unique; otherwise, it is not. Thus, we show that this point belongs to S_{π} . Let's assume $\pi = id_{[3]}$ and $x_1 \ge x_2 \ge x_3$. Thus, the point belongs to S_{π} because

$$(x_1, x_2, x_3) = (x_1 - x_2)(1, 0, 0) + (x_2 - x_3)(1, 1, 0) + x_3(1, 1, 1) + (1 - x_1)(0, 0, 0)$$

with

$$(x_1 - x_2) + (x_2 - x_3) + x_3 + (1 - x_1) = 1.$$

The other cases are similar.