Math589 Homework 7

Note: To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. Let $[n]=\{1, \ldots, n\}$. For any subset $\alpha \subseteq[n]$, the characteristic vector ϕ_{α} of α is a vector in \mathbb{R}^{n} whose i-th entry is 1 if $i \in \alpha$ and 0 otherwise. Show that $\left\{\phi_{\emptyset}, \phi_{[1]}, \ldots, \phi_{[n]}\right\}$ is affinely independent.

Solution. The set

$$
\left\{\phi_{[1]}-\phi_{\emptyset}, \ldots, \phi_{[n]}-\phi_{\emptyset}\right\}=\left\{\phi_{[1]}, \ldots, \phi_{[n]}\right\}
$$

is linearly independent.
2. Let the characteristic vectors be defined as in the previous question with $\mathfrak{n}=3$. Let π be a permutation on $\{1,2,3\}$. Define a simplex

$$
S_{\pi}=\operatorname{conv}\left(\left\{\phi_{\emptyset}, \phi_{\{\pi(1)\}}, \phi_{\{\pi(1), \pi(2)\}}, \phi_{\{\pi(1), \pi(2), \pi(3)\}}\right\}\right) .
$$

We showed that S_{π} is a simplex for $\pi=i d_{[3]}$. Indeed, S_{π} is a simplex for any permutation π. (You do not have to show this.) Show that the cubic enclosed by

$$
0 \leqslant x_{1}, x_{2}, x_{3} \leqslant 1
$$

is the union of S_{π} for all permutation π.
Solution. Let $\left(x_{1}, x_{2}, x_{3}\right)$ be a point in the cube. There is a permutation π such that

$$
x_{\pi(1)} \geqslant x_{\pi(2)} \geqslant x_{\pi(3)} .
$$

If x_{1}, x_{2}, x_{3} are distinct, then this permutation is unique; otherwise, it is not. Thus, we show that this point belongs to S_{π}. Let's assume $\pi=\operatorname{id}_{[3]}$ and $x_{1} \geqslant x_{2} \geqslant x_{3}$. Thus, the point belongs to S_{π} because

$$
\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}\right)(1,0,0)+\left(x_{2}-x_{3}\right)(1,1,0)+x_{3}(1,1,1)+\left(1-x_{1}\right)(0,0,0)
$$

with

$$
\left(x_{1}-x_{2}\right)+\left(x_{2}-x_{3}\right)+x_{3}+\left(1-x_{1}\right)=1 .
$$

The other cases are similar.

