Math589 Homework 6

Note: To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. Let (X, O) be a topological space with $X = \{1, 2, 3, 4\}$ and $O = \{\emptyset, X, \{1\}, \{2\}, \{1, 2\}\}$. Let $Y = \{3\}$. Find the closure cl(Y), the boundary ∂Y , and the interior int(Y) of Y.

Solution. The closed sets that include Y are

$$\{1, 2, 3, 4\}, \{2, 3, 4\}, \{1, 3, 4\}, \{3, 4\},$$

so $cl(Y) = \{3, 4\}.$

Since X is the only closed set that include $X \setminus Y = \{1, 2, 4\}$, we have

 $cl(X \setminus Y) = X.$

Thus, $\partial Y = cl(Y) \cap cl(X \setminus Y) = \{3,4\} \cap X = \{3,4\}$. Finally, $int(Y) = Y \setminus \partial Y = \{3,4\} \setminus \{3,4\} = \emptyset$. 2. Suppose X and Y are deformation retracts of Z. Show that X and Y are homotopy equivalent by Definition 1.2.2.

Solution. Since homotopy equivalence is an equivalence relation, it is enough to show that X and Z are homotopy equivalent.

Let $\{f_t\}_{t \in [0,1]}$ be a deformation retraction of Z onto X. By definition, $f_t : Z \to Z$ and

- $f_0 = id_Z$,
- $f_t(x) = x$ for all $x \in X$ and for all $t \in [0, 1]$,
- $f_1(Z) = X$.

Define $g: X \to Z$ as the embedding map $g(x) = x \in Z$. Define $h: Z \to X$ as $h(z) = f_1(z)$. We show that $g \circ h$ is homotopic to id_Z and $h \circ g$ is homotopic to id_X . By the second condition of the deformation retration, $h \circ g$ is exactly id_X . On the other hand, the family $\{f_{1-t}\}_{t \in [0,1]}$ witnesses that $g \circ h = g \circ f_1 = f_1$ is homotopic to $f_0 = id_Z$.