Math589 Homework 5

Note: To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. Find a closed walk of odd length in the Kneser graph $K_{9,4}$.

Solution. The following is a closed walk of length 9.

$$
\begin{aligned}
& \{1,2,3,4\} \rightarrow\{5,6,7,8\} \\
& \{1,2,3,9\} \rightarrow\{4,5,6,7\} \\
& \{1,2,8,9\} \rightarrow\{3,4,5,6\} \\
& \{1,7,8,9\} \rightarrow\{2,3,4,5\} \\
& \{6,7,8,9\} \rightarrow\{1,2,3,4\}
\end{aligned}
$$

2. Let S^{n} be the sphere of dimension n (in \mathbb{R}^{n+1}). That is,

$$
S^{n}=\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{1}^{2}+\cdots+x_{n+1}^{2}=1\right\} .
$$

Consider the projection map $f: S^{n} \rightarrow \mathbb{R}^{n}$ by

$$
f\left(x_{1}, \ldots, x_{n+1}\right)=\left(x_{1}, \ldots, x_{n}\right)
$$

Find a pair of antipodal points \mathbf{x} and $-\mathbf{x}$ in \mathbb{R}^{n+1} such that $f(\mathbf{x})=f(-\mathbf{x})$. Are there any other pairs of the same property?

Solution. Let $\mathbf{x}=(0, \ldots, 0,1) \in \mathbb{R}^{\mathfrak{n}+1}$ with \mathfrak{n} entries as 0 . Then

$$
f(\mathbf{x})=f(-\mathbf{x})=(0, \ldots, 0) \in \mathbb{R}^{n}
$$

There are no other pairs since

$$
f(\mathbf{x})=\left(x_{1}, \ldots, x_{n}\right)=\left(-x_{1}, \ldots, x_{n}\right)=f(-\mathbf{x})
$$

only when $x_{1}=\cdots=x_{n}=0$.

