Math589 Homework 3

Note: To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. The Hamming distance between two 0,1-strings is the number of different digits. For example, the Hamming distance between 010101 and 111000 is 3. The hypercube H_{d} of dimension d has vertices as all 0,1 -strings of length d, and two vertices are adjacent if the Hamming distance of the strings is 1 . The graphs below illustrate H_{2} and H_{3}. Show that H_{d} is a bipartite graph for all d.

Solution. Partition $V\left(H_{d}\right)$ into two parts $V_{\text {odd }}$ and $V_{\text {even, }}$, where $V_{\text {odd }}$ is all the 0,1 strings in $\mathrm{V}\left(\mathrm{H}_{\mathrm{d}}\right)$ with odd number of ones and $\mathrm{V}_{\text {even }}$ is all the strings with even number of ones. Thus, all edges are between these two sets.
2. Let K_{n} be the complete graph on n vertices. Find the number of spanning trees on K_{n} by the following way: Let L_{n} be the Laplacian matrix of K_{n}. Recall that $L_{n}(1,1)$ is the matrix obtained from L_{n} by removing the first row and the first column. Then the number of spanning tree equals $\operatorname{det} L_{n}(1,1)$.
[Hint: Think about the the eigenvalues of J, the all-ones matrix.]
Solution. First compute that $L_{n}(1,1)$ is an $(n-1) \times(n-1)$ matrix $n I_{n-1}-J_{n-1}$. The eigenvalues of J_{n-1} is $\left\{n-1,0^{(n-2)}\right\}$. Thus, the eigenvalues of $n I_{n-1}-J_{n-1}$ is $\left\{1, n^{(n-2)}\right\}$. Therefore, the determinant of $L_{n}(1,1)$ is n^{n-2}.

