Math589 Homework 3

Note: To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

1. The *Hamming distance* between two 0, 1-strings is the number of different digits. For example, the Hamming distance between 010101 and 111000 is 3. The *hypercube* H_d of dimension d has vertices as all 0, 1-strings of length d, and two vertices are adjacent if the Hamming distance of the strings is 1. The graphs below illustrate H_2 and H_3 . Show that H_d is a bipartite graph for all d.

Solution. Partition $V(H_d)$ into two parts V_{odd} and V_{even} , where V_{odd} is all the 0, 1-strings in $V(H_d)$ with odd number of ones and V_{even} is all the strings with even number of ones. Thus, all edges are between these two sets.

2. Let K_n be the complete graph on n vertices. Find the number of spanning trees on K_n by the following way: Let L_n be the Laplacian matrix of K_n . Recall that $L_n(1,1)$ is the matrix obtained from L_n by removing the first row and the first column. Then the number of spanning tree equals det $L_n(1,1)$.

[Hint: Think about the the eigenvalues of J, the all-ones matrix.]

Solution. First compute that $L_n(1,1)$ is an $(n-1) \times (n-1)$ matrix $nI_{n-1} - J_{n-1}$. The eigenvalues of J_{n-1} is $\{n-1, 0^{(n-2)}\}$. Thus, the eigenvalues of $nI_{n-1} - J_{n-1}$ is $\{1, n^{(n-2)}\}$. Therefore, the determinant of $L_n(1,1)$ is n^{n-2} .