Math589 Homework 10

Note: To submit the k-th homework, simply put your files in the folder HWk on CoCalc, and it will be collected on the due day.

- 1. Recall the following two versions of the Borsuk–Ulam Theorem.
- (BU1b) For every antipodal mapping $f:S^n\to\mathbb{R}^n$, there is a point $x\in S^n$ such that f(x)=0.
- (BU2a) There is no antipodal mapping $f: S^n \to S^{n-1}$.

Show that they are equivalent.

Solution. First we show (BU1b) \Longrightarrow (BU2a). Suppose $f: S^n \to S^{n-1}$ is an antipodal mapping. Then f is also an antipodal mapping from S^n to \mathbb{R}^n , but there is no point $\mathbf{x} \in S^n$ such that $f(\mathbf{x}) = \mathbf{0}$ since $f(\mathbf{x}) \in S^{n-1}$, which is a contradiction.

Next we show (BU2a) \Longrightarrow (BU1b). Suppose $f: S^n \to \mathbb{R}^n$ is an antipodal mapping such that there is no point $x \in S^n$ with f(x) = 0. Then g(x) := f(x)/|f(x)| is well-defined and is an antipodal mapping from S^n to S^{n-1} , which is a contradiction to (BU2a).

2. Let T be a triangulation of B^2 , as shown below, that is antipodally symmetric on the boundary. Label the vertices V(T) by $\{\pm 1, \pm 2\}$ such that it is antipodal on the boundary, then indicate all complementary edges by red lines.

Solution.

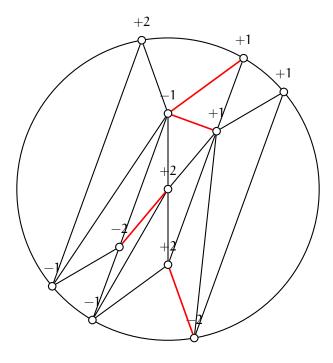


Figure 1: A triangulation T of B²