Sample Questions 8

Let I_n be the $n \times n$ identity matrix. Let J_n be the $n \times n$ all-ones matrix. Also, **1** is the all-ones vector and **0** is the zero vector.

- 1. Let **A** be an $n \times n$ matrix. Show that det($-\mathbf{A}$) = $(-1)^n$ det(**A**). Furthermore, a matrix is called *skew-symmetric* if $\mathbf{A}^\top = -\mathbf{A}$. Show that an $n \times n$ skew-symmetric matrix is always singular when n is odd.
- 2. Suppose **A** is an $n \times n$ orthogonal matrix. That is $\mathbf{A}\mathbf{A}^{\top} = \mathbf{A}^{\top}\mathbf{A} = \mathbf{I}_n$. Show that $|\det(\mathbf{A})| = 1$. Next, suppose **B** is a matrix whose rows $\mathbf{v}_1, \dots, \mathbf{v}_n$ are mutually orthogonal. Show that

$$|\det(\mathbf{B})| = |\mathbf{v}_1| \cdots |\mathbf{v}_2|.$$

(This is also the expected volume, the product of the length of each sides.)

3. Let R be the rectangle defined by $1 \le x \le 4$ and $2 \le y \le 4$. Define a homomorphism $t : \mathbb{R}^2 \to \mathbb{R}^2$ by $t(\mathbf{v}) = \mathbf{A}\mathbf{v}$ with $\mathbf{A} = \begin{bmatrix} 5 & 2 \\ 3 & 4 \end{bmatrix}$. Draw the region $t(\mathsf{R})$ and compute its area.

4. Find

det	2	-1	0	0	0]
	-1	2	-1	0	0
	0	-1	2	-1	0
	0	0	-1	2	_1
	0	0	0	-1	2

by Laplace expansion.

5. Suppose A is a matrix such that A1 = 0. Show that

$$\det(\mathbf{A}(1,1)) = -\det(\mathbf{A}(1,2)).$$

Recall that A(i,j) is the matrix obtained from A by removing the i-th row and the j-th column. (In fact, when i is fixed, $|\det(A(i,j))|$ is a constant for all j.)

6. Let $\mathbf{A} = \mathbf{I}_2$, $\mathbf{B} = \mathbf{J}_2$, and $\mathbf{C} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$. Let

$$\mathbf{X} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{C} \end{bmatrix}$$

Find det(**X**) by the Schur complement of **A**.

7. Find $det(\mathbf{J}_n - \mathbf{I}_n)$ as a formula in n.