Sample Questions 7

1. Let \mathbf{A} be a square matrix whose rows are $\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right\}$. Suppose $\mathbf{r}_{j}=\sum_{i \neq j} \mathbf{c}_{\mathbf{i}} \mathbf{r}_{i}$ for some \boldsymbol{j}. That is, $\mathbf{r}_{\mathbf{j}}$ is a linear combination of the other rows (and thus the rows form a dependent set). Show that $\operatorname{det}(\mathbf{A})=0$.
2. Let a, b, c, d be four distince real numbers and

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & \mathrm{a} & \mathrm{a}^{2} & \mathrm{a}^{3} \\
1 & \mathrm{~b} & \mathrm{~b}^{2} & \mathrm{~b}^{3} \\
1 & \mathrm{c} & \mathrm{c}^{2} & \mathrm{c}^{3} \\
1 & \mathrm{~d} & \mathrm{~d}^{2} & \mathrm{~d}^{3}
\end{array}\right]
$$

A matrix of this form is called a Vandemonde matrix. Show that $\operatorname{det}(\mathbf{A})=$ $(b-a)(c-a)(d-a)(c-b)(d-b)(d-c)$. Therefore, such a matrix is invertible if a, b, c, d are distinct. (See Problem 4 in SQ5 for its applications.)
3. Write down all the $4!=24$ different 4-permutations and their permutation matrices. Then find the determinant of each of the permutation matrices.
4. Find a formula of $\operatorname{det}(\mathbf{A})$ when \mathbf{A} is a 4×4 matrix.
5. Let $\phi=(2,3,4,5,1)$. Find $\mathbf{P}_{\phi}, \mathbf{P}_{\phi^{-1}}$, \mathbf{P}_{ϕ}^{\top}, and their determinants. (Try some other ϕ to convince yourself that $\left.\operatorname{det}\left(\mathbf{P}_{\phi}\right)=\operatorname{det}\left(\mathbf{P}_{\phi}^{\top}\right).\right)$
6. Let \mathbf{A} and \mathbf{B} be two $n \times n$ matrices. Show that $\mathbf{A B}$ is singular when \mathbf{A} is singular. Therefore,

$$
\operatorname{det}(\mathbf{A B})=0=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})
$$

when \mathbf{A} is singular.
7. Let \mathbf{A} and \mathbf{B} be two $\mathfrak{n} \times \mathfrak{n}$ matrices. Use the previous problem and Problem 7 of SQ6 to show that

$$
\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})
$$

(Consider two cases: Whether \mathbf{A} is singular or not.)

