Sample Questions 6

1. Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Apply the Gram-Schmidt algorithm to the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and obtain an orthogonal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ for the space $\mathbb{R}^{3}=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
2. Following the previous problem, normalize the vectors $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ to obtain an orthonormal basis $\left\{\hat{\mathbf{u}}_{1}, \hat{\mathbf{u}}_{2}, \hat{\mathbf{u}}_{3}\right\}$. Going through all the calculation, you should be able to find

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathrm{r}_{1,1} \hat{\mathbf{u}}_{1}+\mathrm{r}_{2,1} \hat{\mathbf{u}}_{2}+\mathrm{r}_{3,1} \hat{\mathbf{u}}_{3}, \\
& \mathbf{v}_{2}=\mathrm{r}_{1,2} \hat{\mathbf{u}}_{1}+\mathrm{r}_{2,2} \hat{\mathbf{u}}_{2}+\mathrm{r}_{3,2} \hat{\mathbf{u}}_{3}, \\
& \mathbf{v}_{3}=\mathrm{r}_{1,3} \hat{\mathbf{u}}_{1}+\mathrm{r}_{2,3} \hat{\mathbf{u}}_{2}+\mathrm{r}_{3,3} \hat{\mathbf{u}}_{3} .
\end{aligned}
$$

Let
$\mathbf{A}=\left[\begin{array}{ccc}\mid & \mid & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \\ \mid & \mid & \mid\end{array}\right], \mathbf{Q}=\left[\begin{array}{ccc}\mid & \mid & \mid \\ \hat{\mathbf{u}}_{1} & \hat{\mathbf{u}}_{2} & \hat{\mathbf{u}}_{3} \\ \mid & \mid & \mid\end{array}\right]$
and $\mathbf{R}=\left[r_{i, j}\right]$. Verify that $\mathbf{A}=\mathbf{Q R}$ such that \mathbf{Q} is an orthogonal matrix and \mathbf{R} is an upper triangular matrix.
3. Let $V=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x+y+z=0\right\}$ be a vector space. Find an orthogonal basis for V.
4. Recall that an $n \times n$ matrix is an orthogonal matrix if $\mathbf{A}^{\top} \mathbf{A}=\mathbf{A} \mathbf{A}^{\top}=$ \mathbf{I}_{n}. Show that for every vector $\mathbf{v} \in$ $\mathbb{R}^{n}, \operatorname{Rep}_{\mathcal{B}}(\mathbf{v})=\mathbf{A}^{\top} \mathbf{v}$, where \mathcal{B} is the orthonormal basis formed by the columns of \mathbf{A}.
5. Let

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 5 & 4 \\
1 & 3 & 4 & 5 \\
1 & 3 & 6 & 6
\end{array}\right]
$$

Use the definition (Four.I.2.1 of the textbook) to find $\operatorname{det}(\mathbf{A})$.
6. Find the determinant of the (row) elementary matrix of each type. Show that $\operatorname{det}\left(\mathbf{E}^{-1}\right)=\operatorname{det}(\mathbf{E})^{-1}$ if E is an elementary matrix.
7. By Gaussian elimination, if a matrix A has the reduced echelon form \mathbf{R}, then we have $\mathbf{E}_{k} \cdots \mathbf{E}_{1} \mathbf{A}=\mathbf{R}$ or $\mathbf{A}=$ $\mathbf{E}_{1}^{-1} \cdots \mathbf{E}_{k}^{-1} \mathbf{R}$, where \mathbf{E}_{i} 's are elementary matrices. Check that

$$
\operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{E}_{1}^{-1}\right) \cdots \operatorname{det}\left(\mathbf{E}_{k}^{-1}\right) \operatorname{det}(\mathbf{R})
$$

Use this to show that $\operatorname{det}(\mathbf{A}) \neq 0$ if and only if \mathbf{A} is invertible.

