Sample Questions 5

Let $\mathcal{M}_{m \times n}$ be the space of all $m \times n$ matrices. Let \mathcal{P}_{n} be the polynomials of degree at most n. Let \mathcal{S}_{n} be the standard basis of \mathbb{R}^{n}. Let \mathbf{I}_{n} be the identity matrix of order n. Let \mathbf{J}_{n} be the all-ones matrix of order n.

Let $E_{i, j}$ be the 2×2 matrix whose $i, j-$ entry is 1 while other entries are zeros. Then $\mathcal{B}=\left\{\mathbf{E}_{1,1}, \mathbf{E}_{1,2}, \mathbf{E}_{2,1}, \mathbf{E}_{2,2}\right\}$ is a basis of $\mathcal{M}_{2 \times 2}$.

1. Let $\mathrm{f}: \mathcal{M}_{2 \times 2} \rightarrow \mathcal{M}_{2 \times 2}$ be a homomorphism defined by $f(\mathbf{A})=\mathbf{J}_{2} \mathbf{A}$. Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$.
2. Let $\mathrm{f}: \mathcal{M}_{2 \times 2} \rightarrow \mathcal{M}_{2 \times 2}$ be a homomorphism defined by $f(\mathbf{A})=\mathbf{A}^{\top}$. Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$.

Let $\mathcal{B}_{n}=\left\{1, \ldots, x^{n}\right\}$ be a basis of \mathcal{P}_{n}.
3. Let $\mathrm{f}: \mathcal{P}_{2} \rightarrow \mathcal{P}_{1}$ be a homomorphism defined by $f(\mathbf{p}(x))=\mathbf{p}^{\prime}(x)$. Let $\mathrm{g}: \mathcal{P}_{1} \rightarrow \mathcal{P}_{2}$ be a homomorphism defined by $g(\mathbf{p}(x))=\mathbf{q}(x)$ with $\mathbf{q}^{\prime}(x)=$ $\mathbf{p}(x)$ and $\mathbf{q}(0)=0$. Find $\operatorname{Rep}_{\mathcal{B}_{2}, \mathcal{B}_{1}}(f)$, $\operatorname{Rep}_{\mathcal{B}_{1}, \mathcal{B}_{2}}(\mathrm{~g})$, and $\operatorname{Rep}_{\mathcal{B}_{2}, \mathcal{B}_{2}}(\mathrm{~g} \circ \mathrm{f})$.
4. Let $\mathrm{f}: \mathcal{P}_{2} \rightarrow \mathbb{R}^{3}$ be a homomorphism defined by

$$
\mathbf{f}(\mathbf{p}(x))=\left[\begin{array}{l}
\mathbf{p}(1) \\
\mathbf{p}(2) \\
\mathbf{p}(3)
\end{array}\right]
$$

Find $\mathbf{M}=\operatorname{Rep}_{\mathcal{B}_{2}, S_{3}}$ (f). (A matrix of this form is called a Vandermonde matrix.)
5. Let

$$
\begin{aligned}
& \mathbf{p}_{1}(x)=\frac{(x-2)(x-3)}{(1-2)(1-3)} \\
& \mathbf{p}_{2}(x)=\frac{(x-1)(x-3)}{(2-1)(2-3)} \\
& \mathbf{p}_{3}(x)=\frac{(x-1)(x-2)}{(3-1)(3-2)}
\end{aligned}
$$

(These are examples of Lagrange polynomials.) Let $g: \mathbb{R}^{3} \rightarrow \mathcal{P}_{2}$ be a homomorphism defined by

$$
g\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=a p_{1}(x)+b \mathbf{p}_{2}(x)+c p_{3}(x)
$$

Find $\mathbf{N}=\operatorname{Rep}_{s_{3}, \mathcal{B}_{2}}(\mathrm{~g})$. Then check $\mathbf{M N}=\mathbf{N M}=\mathbf{I}_{3}$.
6. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis of a vector space V. Let $\lambda_{1}, \ldots, \lambda_{n}$ be some real numbers. Suppose $f: V \rightarrow V$ is a homomorphism defined by $f\left(\mathbf{v}_{i}\right)=\lambda_{i} \mathbf{v}_{i}$. Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$.
7. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis of a vector space V. Let λ be a real number. Suppose $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{V}$ is a homomorphism defined by $f\left(\mathbf{v}_{1}\right)=\lambda \mathbf{v}_{1}$ and $f\left(\mathbf{v}_{i}\right)=\lambda \mathbf{v}_{i}+\mathbf{v}_{i-1}$ for all $i \geqslant 2$. Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$.

