Sample Questions 5

Let $\mathcal{M}_{m \times n}$ be the space of all $m \times n$ matrices. Let \mathcal{P}_n be the polynomials of degree at most n. Let \mathcal{S}_n be the standard basis of \mathbb{R}^n . Let \mathbf{I}_n be the identity matrix of order n. Let \mathbf{J}_n be the all-ones matrix of order n.

Let $E_{i,j}$ be the 2 × 2 matrix whose i, jentry is 1 while other entries are zeros. Then $\mathcal{B} = \{E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2}\}$ is a basis of $\mathcal{M}_{2\times 2}$.

- 1. Let $f : \mathcal{M}_{2\times 2} \to \mathcal{M}_{2\times 2}$ be a homomorphism defined by $f(\mathbf{A}) = \mathbf{J}_2 \mathbf{A}$. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$.
- 2. Let $f : \mathfrak{M}_{2\times 2} \to \mathfrak{M}_{2\times 2}$ be a homomorphism defined by $f(\mathbf{A}) = \mathbf{A}^{\top}$. Find $\operatorname{Rep}_{\mathfrak{B},\mathfrak{B}}(f)$.

Let $\mathcal{B}_n = \{1, \ldots, x^n\}$ be a basis of \mathcal{P}_n .

- 3. Let $f : \mathcal{P}_2 \to \mathcal{P}_1$ be a homomorphism defined by $f(\mathbf{p}(x)) = \mathbf{p}'(x)$. Let $g : \mathcal{P}_1 \to \mathcal{P}_2$ be a homomorphism defined by $g(\mathbf{p}(x)) = \mathbf{q}(x)$ with $\mathbf{q}'(x) = \mathbf{p}(x)$ and $\mathbf{q}(0) = 0$. Find $\operatorname{Rep}_{\mathcal{B}_2,\mathcal{B}_1}(f)$, $\operatorname{Rep}_{\mathcal{B}_1,\mathcal{B}_2}(g)$, and $\operatorname{Rep}_{\mathcal{B}_2,\mathcal{B}_2}(g \circ f)$.
- 4. Let $f: \mathfrak{P}_2 \to \mathbb{R}^3$ be a homomorphism defined by

$$f(\mathbf{p}(\mathbf{x})) = \begin{bmatrix} \mathbf{p}(1) \\ \mathbf{p}(2) \\ \mathbf{p}(3) \end{bmatrix}.$$

Find $\mathbf{M} = \operatorname{Rep}_{\mathcal{B}_2, \mathcal{S}_3}(f)$. (A matrix of this form is called a Vandermonde matrix.)

5. Let

$$\mathbf{p}_{1}(\mathbf{x}) = \frac{(\mathbf{x}-2)(\mathbf{x}-3)}{(1-2)(1-3)},$$
$$\mathbf{p}_{2}(\mathbf{x}) = \frac{(\mathbf{x}-1)(\mathbf{x}-3)}{(2-1)(2-3)},$$
$$\mathbf{p}_{3}(\mathbf{x}) = \frac{(\mathbf{x}-1)(\mathbf{x}-2)}{(3-1)(3-2)}.$$

(These are examples of Lagrange polynomials.) Let $g : \mathbb{R}^3 \to \mathcal{P}_2$ be a homomorphism defined by

$$g\begin{pmatrix} a \\ b \\ c \end{bmatrix}) = a\mathbf{p}_1(x) + b\mathbf{p}_2(x) + c\mathbf{p}_3(x).$$

Find $\mathbf{N} = \operatorname{Rep}_{S_3, \mathcal{B}_2}(g)$. Then check $\mathbf{MN} = \mathbf{NM} = \mathbf{I}_3$.

- Let B = {v₁,..., v_n} be a basis of a vector space V. Let λ₁,..., λ_n be some real numbers. Suppose f : V → V is a homomorphism defined by f(v_i) = λ_iv_i. Find Rep_{B,B}(f).
- 7. Let $\mathcal{B} = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be a basis of a vector space V. Let λ be a real number. Suppose $f : V \to V$ is a homomorphism defined by $f(\mathbf{v}_1) = \lambda \mathbf{v}_1$ and $f(\mathbf{v}_i) = \lambda \mathbf{v}_i + \mathbf{v}_{i-1}$ for all $i \ge 2$. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$.