Sample Questions 3

For all problems, let $\mathcal{M}_{m \times n}$ be the space of all 2×3 matrices, and let \mathcal{P}_{n} be the space of all polynomials of degree at most n.

Let $E_{i j}$ be the 2×3 matrix whose entries are all zeros except that the i, j entry is one. Then

$$
\mathcal{B}=\left\{\mathrm{E}_{11}, \mathrm{E}_{12}, \mathrm{E}_{13}, \mathrm{E}_{21}, \mathrm{E}_{22}, \mathrm{E}_{23}\right\}
$$

is a basis of $\mathcal{M}_{2 \times 3}$. Suppose f : $\mathcal{M}_{2 \times 3} \rightarrow \mathcal{M}_{2 \times 3}$ is a homomorphism such that $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$ equals

$$
\mathbf{A}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

1. Let $\mathbf{v}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$. Find $f(\mathbf{v})$.
2. Find a matrix \mathbf{v} such that $f(\mathbf{v})=$ $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ or show such a matrix does not exist.

Let $\mathcal{B}=\{1, x\}$ be a basis of \mathcal{P}_{2} and $\mathcal{D}=\left\{1, x, x^{2}\right\}$ be a basis of \mathcal{P}_{3}. Define $\mathrm{f}: \mathcal{P}_{2} \rightarrow \mathcal{P}_{3}$ by $f(p(x))=(x+1) \cdot p(x)$. Define $\mathrm{g}: \mathcal{P}_{2} \rightarrow \mathcal{P}_{3}$ by $g(p(x))=$ $(x-1) \cdot p(x)$.
5. Check that $f+g$ is also a homomorphism from \mathcal{P}_{2} to \mathcal{P}_{3} defined by $(f+g)(p(x))=(2 x) \cdot p(x)$. Let $\mathbf{A}=$ $\operatorname{Rep}_{\mathcal{B}, \mathcal{D}}(f), \mathbf{B}=\operatorname{Rep}_{\mathcal{B}, \mathcal{D}}(\mathrm{g})$, and $\mathbf{C}=$ $\operatorname{Rep}_{\mathcal{B}, \mathcal{D}}(f+g)$. Find $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and then check if $\mathbf{A}+\mathbf{B}=\mathbf{C}$. Is $f+g$ one-to-one? Is it onto?

Let $\mathcal{B}_{n}=\left\{1, \ldots, x^{n}\right\}$ be a basis of \mathcal{P}_{n}. Define $\mathrm{f}: \mathcal{P}_{3} \rightarrow \mathcal{P}_{2}$ by $f(p(x))=p^{\prime}(x)$. Define $\mathrm{g}: \mathcal{P}_{2} \rightarrow \mathcal{P}_{1}$ by $g(p(x))=p^{\prime}(x)$. That is, both f and g are the differential operator, with different domains and different codomains.
6. Check that $\mathrm{g} \circ \mathrm{f}$ is a homomorphism from \mathcal{P}_{3} to \mathcal{P}_{1} defined by $g \circ f(p(x))=$ $p^{\prime \prime}(x)$. Let $\mathbf{A}=\operatorname{Rep}_{\mathcal{B}_{3}, \mathcal{B}_{2}}(f), \mathbf{B}=$ $\operatorname{Rep}_{\mathcal{B}_{2}, \mathcal{B}_{1}}(\mathrm{~g})$, and $\mathbf{C}=\operatorname{Rep}_{\mathcal{B}_{3}, \mathcal{B}_{1}}(\mathrm{~g} \circ \mathrm{f})$. Find $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and then check if $\mathbf{B A}=\mathbf{C}$. Is $g \circ f$ one-to-one? Is it onto?
3. Find the nullspace and the nullity of f.
4. Find the range and the rank of f.
7. Define id : $\mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ by $\operatorname{id}(p(x))=$ $p(x)$. Let $\mathcal{B}=\left\{1, x, x^{2}\right\}$ and $\mathcal{D}=$ $\left\{1, x+1,(x+1)^{2}\right\}$ be two bases of \mathcal{P}. Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{D}}(\mathrm{id})$. Is id nonsingular?

