Sample Questions 3

For all problems, let $\mathcal{M}_{m \times n}$ be the space of all 2×3 matrices, and let \mathcal{P}_n be the space of all polynomials of degree at most n.

Let E_{ij} be the 2 × 3 matrix whose entries are all zeros except that the i, j-entry is one. Then

$$\mathcal{B} = \{\mathsf{E}_{11}, \mathsf{E}_{12}, \mathsf{E}_{13}, \mathsf{E}_{21}, \mathsf{E}_{22}, \mathsf{E}_{23}\}$$

is a basis of $\mathcal{M}_{2\times 3}$. Suppose f: $\mathcal{M}_{2\times 3} \rightarrow \mathcal{M}_{2\times 3}$ is a homomorphism such that $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$ equals

1. Let
$$\mathbf{v} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
. Find $f(\mathbf{v})$.

- 2. Find a matrix **v** such that $f(\mathbf{v}) = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ or show such a matrix does not exist.
- 3. Find the nullspace and the nullity of f.
- 4. Find the range and the rank of f.

Let $\mathcal{B} = \{1, x\}$ be a basis of \mathcal{P}_2 and $\mathcal{D} = \{1, x, x^2\}$ be a basis of \mathcal{P}_3 . Define $f: \mathcal{P}_2 \to \mathcal{P}_3$ by $f(p(x)) = (x + 1) \cdot p(x)$. Define $g: \mathcal{P}_2 \to \mathcal{P}_3$ by $g(p(x)) = (x - 1) \cdot p(x)$.

5. Check that f + g is also a homomorphism from \mathcal{P}_2 to \mathcal{P}_3 defined by $(f + g)(p(x)) = (2x) \cdot p(x)$. Let $\mathbf{A} =$ $\operatorname{Rep}_{\mathcal{B},\mathcal{D}}(f)$, $\mathbf{B} = \operatorname{Rep}_{\mathcal{B},\mathcal{D}}(g)$, and $\mathbf{C} =$ $\operatorname{Rep}_{\mathcal{B},\mathcal{D}}(f + g)$. Find \mathbf{A} , \mathbf{B} , \mathbf{C} and then check if $\mathbf{A} + \mathbf{B} = \mathbf{C}$. Is f + g one-to-one? Is it onto?

Let $\mathcal{B}_n = \{1, ..., x^n\}$ be a basis of \mathcal{P}_n . Define $f : \mathcal{P}_3 \to \mathcal{P}_2$ by f(p(x)) = p'(x). Define $g : \mathcal{P}_2 \to \mathcal{P}_1$ by g(p(x)) = p'(x). That is, both f and g are the differential operator, with different domains and different codomains.

- 6. Check that $g \circ f$ is a homomorphism from \mathcal{P}_3 to \mathcal{P}_1 defined by $g \circ f(p(x)) =$ p''(x). Let $\mathbf{A} = \operatorname{Rep}_{\mathcal{B}_3, \mathcal{B}_2}(f)$, $\mathbf{B} =$ $\operatorname{Rep}_{\mathcal{B}_2, \mathcal{B}_1}(g)$, and $\mathbf{C} = \operatorname{Rep}_{\mathcal{B}_3, \mathcal{B}_1}(g \circ f)$. Find \mathbf{A} , \mathbf{B} , \mathbf{C} and then check if $\mathbf{B}\mathbf{A} = \mathbf{C}$. Is $g \circ f$ one-to-one? Is it onto?
- 7. Define id : $\mathcal{P}_2 \rightarrow \mathcal{P}_2$ by id(p(x)) = p(x). Let $\mathcal{B} = \{1, x, x^2\}$ and $\mathcal{D} = \{1, x + 1, (x + 1)^2\}$ be two bases of \mathcal{P} . Find $\operatorname{Rep}_{\mathcal{B},\mathcal{D}}(id)$. Is id nonsingular?