Sample Questions 15

Let \mathbf{I}_{n} be the $\mathfrak{n} \times \mathfrak{n}$ identity matrix. Let \mathbf{O}_{n} be the $\mathrm{n} \times \mathrm{n}$ zero matrix.

1. Let

$$
\mathbf{A}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Compute $\mathbf{I}_{4}, \mathbf{A}, \mathbf{A}^{2}, \mathbf{A}^{3}$, and \mathbf{A}^{4}. Then find the minimal polynomial of A. Also, find the minimal polynomial of $\mathbf{A}+\lambda \mathbf{I}_{4}$ for a given real number λ.
2. Let

$$
\mathbf{A}=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

Find the minimal polynomial of \mathbf{A}.
3. Consider the map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
f\left(\left[\begin{array}{l}
r \\
\theta \\
z
\end{array}\right]\right)=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right],
$$

where $(x, y, z)^{\top}$ is the Cartesian coordinates of the point $(r, \theta, z)^{\top}$ in the cylinder coordinates. That is,

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z
\end{aligned}
$$

Find the Jacobian f^{\prime} of f, and compute $\operatorname{det}\left(f^{\prime}\right)$.
4. Consider the map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
f\left(\left[\begin{array}{l}
r \\
\theta \\
\phi
\end{array}\right]\right)=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right],
$$

where $(x, y, z)^{\top}$ is the Cartesian coordinates of the point $(r, \theta, \phi)^{\top}$ in the spherical coordinates. That is,

$$
\begin{aligned}
& x=r \sin \phi \cos \theta \\
& y=r \sin \phi \sin \theta \\
& z=r \cos \phi
\end{aligned}
$$

Find the Jacobian f^{\prime} of f, and compute $\operatorname{det}\left(f^{\prime}\right)$.
5. Define a $\operatorname{map} f(\mathbf{v})=A v$ with

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

Find the Jacobian f^{\prime} of f.
6. Suppose $f(x)$ is a polynomial over \mathbb{C}. Show that f as a multiple root if and only if $f^{\prime}(x)$ and $f(x)$ has a common root. (A multiple root is a root c of $f(x)$ such th at $(x-c)^{m}$ is a factor of $f(x)$ with $m \geqslant 2$.)
7. Check if the polynomial

$$
f(x)=x^{4}+2 x^{3}+3 x^{2}+2 x+1
$$

has a multiple root in \mathbb{C} or not.

