Sample Questions 13

Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be an orthonormal basis of \mathbb{R}^{3}. Let $V=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

1. Let $t: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the orthogonal projection onto V. Find the eigenvalues and their corresponding eigenspaces. Find the characteristic polynomial of t.
2. Let $t: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the reflection along V. Find an orthonormal basis of \mathbb{R}^{3} and $T:=\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(\mathrm{t})$ such that T is diagonal.
3. Prove that similar matrices have the same characteristic polynomials.
4. Find the characteristic polynomial of \mathbf{J}_{n}, the $\mathfrak{n} \times \mathfrak{n}$ all-ones matrix.
5. Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
0 & 1 & 1 \\
-1 & 2 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Find an orthogonal matrix \mathbf{Q} such that $\mathbf{Q}^{\top} \mathbf{A Q}$ is upper triangular.
6. Prove that if \mathbf{U} is an upper triangular matrix, then $\mathbf{U U}^{*}=\mathbf{U}^{*} \mathbf{U}$ implies \mathbf{U} is diagonal.
7. Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

Find the spectral decomposition

$$
\mathbf{A}=\sum_{\mathrm{k}=1}^{3} \lambda_{\mathrm{k}} \mathbf{v}_{\mathrm{k}} \mathbf{v}_{\mathrm{k}}^{\top}
$$

such that \mathbf{v}_{k} is an eignevector of \mathbf{A} with respect to λ_{k} for $k=1,2,3$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is orthonormal.

