Sample Questions 12

Let \mathbf{I}_{n} be the $n \times n$ identity matrix. Let $\mathbf{O}_{m, n}$ be the $m \times n$ zero matrix.

1. Let V and W be two vector spaces with dimensions n and m, respectively. Let $f: V \rightarrow W$ be a homomorphism from V to W. Find a basis \mathcal{B} of V and a basis \mathcal{D} of W such that

$$
\operatorname{Rep}_{\mathcal{B}, \mathcal{D}}(f)=\left[\begin{array}{cc}
I_{r} & O_{r, n-r} \\
\mathrm{O}_{\mathfrak{m}-r, r} & \mathrm{O}_{\mathfrak{m}-r, n-r}
\end{array}\right]
$$

where $r=\operatorname{rank}(f)$.
2. Diagonalize

$$
\mathbf{A}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

or show that it is not diagonalizable.
3. Diagonalize

$$
\mathbf{A}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

or show that it is not diagonalizable.
4. Let

$$
\mathbf{A}=\left[\begin{array}{llll}
2 & 0 & 1 & 1 \\
0 & 2 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Find the characteristic polynomial of A and the eigenspace for each of the eigenvalues of \mathbf{A}.
5. Diagonalize

$$
\mathbf{A}=\left[\begin{array}{llll}
2 & 1 & 1 & 1 \\
0 & 2 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

or show that it is not diagonalizable.
6. Find a 5×5 matrix whose eigenvalues are 1 and 2 such that 1 has algebraic multiplicity 2 and geometric multiplicity 1 , while 2 has algebraic multiplicity 3 and geometric multiplicity 2.
7. A (left) stochastic matrix is a nonnegative square matrix such that each column sum is 1 . Show that every stochastic matrix has the eigenvalue 1 . [In a Markov chain with the stochastic matrix \mathbf{M}, if $\mathbf{M v}=\mathbf{v}$, then \mathbf{v} is the final stationary distribution and is the eigenvector corresponding to the eigenvalue 1.]

