Sample Questions 11

Let \mathcal{P}_{n} be the space of all polynomials with real coefficients and with degree at most n.

1. Let $\mathrm{V}=\mathcal{P}_{1} \oplus \mathcal{P}_{2}$ be the direct sum of \mathcal{P}_{1} and \mathcal{P}_{2}. Then every element in V is of the form $(a(x), b(x))$ with $a(x) \in \mathcal{P}_{1}$ and $b(x) \in \mathcal{P}_{2}$. Compute $\left(1+2 x, 3+2 x+x^{2}\right)+\left(1-x, 1-x+x^{2}\right)$ and

$$
5\left(1+2 x, 3+2 x+x^{2}\right)
$$

Also, find a basis of V .
2. Let $\mathrm{V}=\mathcal{P}_{1} \times \mathcal{P}_{2}$. Let $\mathrm{f}: \mathrm{V} \rightarrow \mathcal{P}_{4}$ be a mapping defined by

$$
f(a(x), b(x))=a(x) p(x)+b(x) q(x)
$$

where $p(x)=4+8 x+5 x^{2}+x^{3}$ and $q(x)=-1+x^{2}$. Let

$$
\mathcal{B}=\left\{(1,0),(x, 0),(0,1),(0, x),\left(0, x^{2}\right)\right\}
$$

be a basis of V and let

$$
\mathcal{D}=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}
$$

be a basis of \mathcal{P}_{4}. Show that f is a homomorphism and find the matrix representation $\operatorname{Rep}_{\mathcal{B}, \mathcal{D}}(f)$. Can you find the nullspace fo f ?
3. Let $p(x)=1+2 x+x^{2}$ and $q(x)=$ $2+3 x+x^{2}$. Find the Sylvester matrix $S_{p, q}$ of $p(x)$ and $q(x)$. Also, find the resultant $\operatorname{Res}(p, q)$ of $p(x)$ and $q(x)$. Based on this, do $p(x)$ and $q(x)$ have a common root?
4. Diagonalize $\mathbf{A}=\left[\begin{array}{cc}-2 & 15 \\ 1 & 0\end{array}\right]$.
5. Diagonalize $\mathbf{A}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.
6. Diagonalize $\mathbf{A}=\left[\begin{array}{ccc}2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$.
7. Diagonalize $\mathbf{A}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$.

