Sample Questions 1

1

1. Find a basis for the vector space V.

(a)
$$V = \mathbb{R}^3$$

- (b) $V = \mathcal{P}_3$, the space of all polynomials of degree at most 3
- (c) $V = M_{3\times 3}$, the space of all 3×3 matrices
- (d) $V = S_3$, the space of all 3×3 symmetric matrices $(\mathbf{A} = \mathbf{A}^{\top})$
- (e) $V = \mathcal{K}_3$, the space of all 3×3 skew-symmetric matrices $(\mathbf{A} = -\mathbf{A}^{\top})$

2. With the given basis \mathcal{B} and the representation, find the vector \mathbf{v} .

(a)
$$\mathcal{B} = \{1, x - 1, (x - 1)^2\}$$
 and $\operatorname{Rep}_{\mathcal{B}}(\mathbf{v}) = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$

(b)
$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$$
 and $\operatorname{Rep}_{\mathcal{B}}(\mathbf{v}) = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$

(c)
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\5\\10 \end{bmatrix}, \begin{bmatrix} 0\\1\\5 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$
 and $\operatorname{Rep}_{\mathcal{B}}(\mathbf{v}) = \begin{bmatrix} 3\\4\\5 \end{bmatrix}$

3. Let \mathcal{B} be as Problem 2(a), (b), and (c), respectively. Find Rep_{\mathcal{B}}(v).

(a)
$${\bf v} = {\bf x}^2$$

(b)
$$\mathbf{v} = \begin{bmatrix} 5 & 7 \\ 7 & 3 \end{bmatrix}$$

(c)
$$\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

4. Suppose f is a homomorphism with

$$f(\begin{bmatrix} 1\\1 \end{bmatrix}) = \begin{bmatrix} 3\\5 \end{bmatrix}$$
 and $f(\begin{bmatrix} 1\\-1 \end{bmatrix}) = \begin{bmatrix} 7\\7 \end{bmatrix}$.

Find $f(\begin{bmatrix} 2 \\ 4 \end{bmatrix})$.

5. Suppose **A** is a 2×3 matrix with $\mathbf{Ae}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{Ae}_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, and $\mathbf{Ae}_3 = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$, where $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is the standard basis of \mathbb{R}^3 . Find **A**.

6. Let $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 5 \\ 10 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 5 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ be a basis of \mathbb{R}^3 . Find $\operatorname{Rep}_{\mathcal{B}}(\mathbf{e}_1)$, $\operatorname{Rep}_{\mathcal{B}}(\mathbf{e}_2)$, and $\operatorname{Rep}_{\mathcal{B}}(\mathbf{e}_3)$, where $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is the standard basis of \mathbb{R}^3 .

7. Suppose f is a homomorphism with

$$f(\begin{bmatrix}1\\5\\10\end{bmatrix}) = f(\begin{bmatrix}0\\1\\5\end{bmatrix}) = f(\begin{bmatrix}0\\0\\1\end{bmatrix}) = \begin{bmatrix}3\\4\end{bmatrix}.$$

Find a matrix **A** such that $f(\mathbf{v}) = \mathbf{A}\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^3$.