國立中山大學	NATIONAL	SUN YAT-SEN UNIVERSITY
線性代數(二)	MATH 104 / GE.	AI 1209: Linear Algebra II
第二次期中考	May 6, 2019	Midterm 2
姓名 Name :		_
學號 Student ID # : _		_
	T .	II· I· L· L· L· G·
	Lecturer:	Jephian Lin 林晉宏
	Contents:	cover page,
		8 pages of questions,

score page at the end To be answered: on the test paper Duration: **110 minutes** Total points: **35 points** + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining it or circling it. If multiple answers are shown then no marks will be awarded.
- 可用中文或英文作答

1. [5pt] Let

$$\mathbf{b}_1 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \text{ and } \mathbf{b}_3 = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}.$$

Let $V = \text{span}\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ be a vector space. Use the Gram–Schmidt algorithm to find an **orthonormal** basis of V.

•

2. [5pt] Let

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 4 & 4 & 4 & 4 \\ 1 & 4 & 9 & 9 & 9 \\ 1 & 4 & 9 & 10 & 10 \\ 1 & 4 & 9 & 10 & 11 \end{bmatrix}$$

Find $det(\mathbf{A})$.

3. [2pt] Let

$$\mathbf{A} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix}.$$

By the permutation expansion, $det(\mathbf{A})$ is the sum of 24 terms. Find the signs of the following terms. [Write + or - in the blank.]

- (a) ()bglm
- (b) ()*chin*
- (c) () *dejo*
- (d) ()dgjm
- 4. [1pt] Let \mathbf{A} be a 5 × 5 matrix. According to the permutation expansion, how many terms are there in det(\mathbf{A})? Also, how many terms in det(\mathbf{A}) have negative signs?
- 5. [2pt] Let

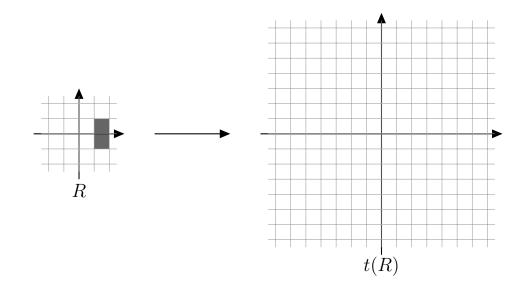
$$\mathbf{A} = \begin{bmatrix} a & 0 & 0 & b \\ 0 & x & y & 0 \\ 0 & z & w & 0 \\ c & 0 & 0 & d \end{bmatrix}$$

Find the formula of $det(\mathbf{A})$.

6. [5pt] Let R be the rectangle enclosed by the four vertices

(1, 1), (1, -1), (2, -1), (2, 1).

Let $t : \mathbb{R}^2 \to \mathbb{R}^2$ be a homomorphism defined by $t(\mathbf{x}) = \mathbf{T}\mathbf{x}$ with $\mathbf{T} = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$. Draw the region t(R) and compute its area.



7. Let

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 & 1 \\ 0 & 0 & 3 & 1 & 1 \\ 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}.$$

(a) [1pt] Find $det(\mathbf{A})$.

(b) [2pt] Let \mathbf{A}^{-1} be the inverse of \mathbf{A} . Find the 4, 3-entry of \mathbf{A}^{-1} .

(c) [2pt] Find the 3, 4-entry of \mathbf{A}^{-1} .

8. [5pt] Let \mathbf{A} be an $n \times n$ matrix whose columns are $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$. Show that if $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is linearly dependent, then $\det(\mathbf{A}) = 0$. [Prove by the definition of the determinant. Do not use the result that the determinant of singular matrix is zero.]

9. [5pt] Let \mathbf{L}_n be the $n \times n$ matrix whose i, j-entry is -2 if i = j, 1 if |i - j| = 1, and 0 otherwise. For example,

$$\mathbf{L}_{2} = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}, \mathbf{L}_{3} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}, \text{ and } \mathbf{L}_{4} = \begin{bmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

Find the formula of $det(\mathbf{L}_n)$ in terms of n. [You have to justify your answer.]

- 10. [extra 2pt] Let $\mathbf{A} = \begin{bmatrix} 5 & -6 \\ 1 & 0 \end{bmatrix}$. Follow the instructions below to find an invertible matrix \mathbf{Q} and a diagonal matrix \mathbf{D} such that $\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \mathbf{D}$.
 - 1. Compute the polynomial $p(t) = \det(\mathbf{A} t\mathbf{I})$, where $\mathbf{I} = \mathbf{I}_2$ is the identity matrix.
 - 2. Solve p(t) = 0 and get the two roots $\Lambda = \{\lambda_1, \lambda_2\}$.
 - 3. For each $\lambda \in \Lambda$, compute a basis of the nullspace of $\mathbf{A} \lambda \mathbf{I}$. (In this special case, say nullspace $(\mathbf{A} \lambda_1 \mathbf{I}) = \operatorname{span}\{\mathbf{v}_1\}$ and nullspace $(\mathbf{A} \lambda_2 \mathbf{I}) = \operatorname{span}\{\mathbf{v}_2\}$.)
 - 4. Let **Q** be the matrix whose columns are $\{\mathbf{v}_1, \mathbf{v}_2\}$. Then compute $\mathbf{D} = \mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}$. (If everything works out, your **D** is a diagonal matrix.)

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	5	
8	2	
Total	35 (+2)	