NATIONAL SUN YAT	-SEN UNIVERSITY
MATH 104 / GEAI 1209:	Linear Algebra II
March 25, 2019	Midterm 1
Contents: cover pag	Lin 林晉宏 ge, of questions,
	Lecturer: Jephian I Contents: cover pag

To be answered: on the test paper Duration: **110 minutes** Total points: **30 points** + 2 extra points

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining it or circling it. If multiple answers are shown then no marks will be awarded.
- 可用中文或英文作答

1. [2pt] Let X and Y be two vector spaces. Let $f : X \to Y$ be a function. Write down the definition of f being a homomorphism.

2. Let \mathcal{P}_2 be the space of all polynomials with degree at most 2. Let

$$\mathcal{B} = \{1, x - 2, (x - 2)^2\}$$

be a basis of \mathcal{P}_2 .

(a) [2pt] Find the representation $\operatorname{Rep}_{\mathcal{B}}(x^2)$.

(b) [1pt] Suppose \mathbf{v} is a vector in \mathcal{P}_2 with $\operatorname{Rep}_{\mathcal{B}}(\mathbf{v}) = \begin{bmatrix} 3\\5\\7 \end{bmatrix}$. Find \mathbf{v} . (You do not have to expand the your answer.)

3. [5pt] Let $\mathcal{M}_{2\times 2}$ be the space of all 2×2 matrices. Let $\mathbf{E}_{i,j}$ be the 2×2 matrix whose i, j-entry is 1 and other entries are zeros. Then

$$\mathcal{B} = \{\mathbf{E}_{1,1}, \mathbf{E}_{1,2}, \mathbf{E}_{2,1}, \mathbf{E}_{2,2}\}$$

is a basis of $\mathcal{M}_{2\times 2}$. Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ and define the homomorphism $f : \mathcal{M}_{2\times 2} \to \mathcal{M}_{2\times 2}$ by $f(\mathbf{M}) = \mathbf{A}\mathbf{M}$ for all $\mathbf{M} \in \mathcal{M}_{2\times 2}$. Find $\operatorname{Rep}_{\mathcal{B},\mathcal{B}}(f)$. 4. Let

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\5 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \text{ and } \mathbf{u}_1 = \begin{bmatrix} 3\\7 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 7\\3 \end{bmatrix}.$$

(a) [2pt] Let $f : \mathbb{R}^3 \to \mathbb{R}^2$ be homomorphism such that

$$f(\mathbf{v}_1) = f(\mathbf{v}_2) = f(\mathbf{v}_3) = \mathbf{u}_1.$$

Find $f\begin{pmatrix} 1\\0\\0 \end{pmatrix}$.

(b) [3pt] Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis of \mathbb{R}^3 and let $\mathcal{D} = \{\mathbf{u}_1, \mathbf{u}_2\}$ be a basis of \mathbb{R}^2 . Suppose $g : \mathbb{R}^3 \to \mathbb{R}^2$ is a homomorphism with $\operatorname{Rep}_{\mathcal{B}, \mathcal{D}}(g) = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 9 & 0 \end{bmatrix}$. Find $g(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix})$. 5. [5pt] Let $\mathcal{M}_{2\times 2}$ be the space of all 2×2 matrices. Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ and define the homomorphism $f : \mathcal{M}_{2\times 2} \to \mathcal{M}_{2\times 2}$ by $f(\mathbf{M}) = \mathbf{A}\mathbf{M}$ for all $\mathbf{M} \in \mathcal{M}_{2\times 2}$. Find a basis of the null space of f and a basis of the range of f. [If you use your answer from Problem 3, double check your answer to make sure it is correct.]

- 6. Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$. Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis of \mathbb{R}^2 and let \mathcal{S}_2 be the standard basis of \mathbb{R}^2 .
 - (a) [2pt] Find $\operatorname{Rep}_{\mathcal{S}_2,\mathcal{B}}(\operatorname{id})$, the change of basis matrix from \mathcal{S}_2 to \mathcal{B} .

(b) [3pt] Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a homomorphism with $\operatorname{Rep}_{\mathcal{S}_2, \mathcal{S}_2}(f) = \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix}$. Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$. 7. [5pt] Let $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 5 \end{bmatrix}$. Find matrices \mathbf{P} and \mathbf{Q} such that $\mathbf{PAQ} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$ 8. [extra 2pt] Define a sequence by $a_0 = 6$, $a_1 = 13$, and

$$a_n - 5a_{n-1} + 6a_{n-2} = 0$$

for all $n \ge 2$. Find a formula for a_n . [Hints: First make an observation that

$$\begin{bmatrix} a_{n+1} \\ a_n \end{bmatrix} = \begin{bmatrix} 5 & -6 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_n \\ a_{n-1} \end{bmatrix}.$$

Then you may use the fact

$$\begin{bmatrix} 5 & -6 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}^{-1}$$

to find the answer.]

[END]

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	2	
Total	30 (+2)	