\qquad
學號 Student ID \＃： \qquad

Lecturer：Jephian Lin 林晉宏
Contents：cover page，
7 pages of questions， score page at the end
To be answered：on the test paper
Duration： 110 minutes
Total points： $\mathbf{3 0}$ points +2 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－可用中文或英文作答

1. [2pt] Let X and Y be two vector spaces. Let $f: X \rightarrow Y$ be a function. Write down the definition of f being a homomorphism.
2. Let \mathcal{P}_{2} be the space of all polynomials with degree at most 2 . Let

$$
\mathcal{B}=\left\{1, x-2,(x-2)^{2}\right\}
$$

be a basis of \mathcal{P}_{2}.
(a) [2pt] Find the representation $\operatorname{Rep}_{\mathcal{B}}\left(x^{2}\right)$.
(b) $[1 \mathrm{pt}]$ Suppose \mathbf{v} is a vector in \mathcal{P}_{2} with $\operatorname{Rep}_{\mathcal{B}}(\mathbf{v})=\left[\begin{array}{l}3 \\ 5 \\ 7\end{array}\right]$. Find \mathbf{v}. (You do not have to expand the your answer.)
3. [5pt] Let $\mathcal{M}_{2 \times 2}$ be the space of all 2×2 matrices. Let $\mathbf{E}_{i, j}$ be the 2×2 matrix whose i, j-entry is 1 and other entries are zeros. Then

$$
\mathcal{B}=\left\{\mathbf{E}_{1,1}, \mathbf{E}_{1,2}, \mathbf{E}_{2,1}, \mathbf{E}_{2,2}\right\}
$$

is a basis of $\mathcal{M}_{2 \times 2}$. Consider the matrix $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ and define the homomorphism $f: \mathcal{M}_{2 \times 2} \rightarrow \mathcal{M}_{2 \times 2}$ by $f(\mathbf{M})=\mathbf{A M}$ for all $\mathbf{M} \in \mathcal{M}_{2 \times 2}$. Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$.
4. Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \text { and } \mathbf{u}_{1}=\left[\begin{array}{l}
3 \\
7
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
7 \\
3
\end{array}\right]
$$

(a) $[2 \mathrm{pt}]$ Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be homomorphism such that

$$
f\left(\mathbf{v}_{1}\right)=f\left(\mathbf{v}_{2}\right)=f\left(\mathbf{v}_{3}\right)=\mathbf{u}_{1}
$$

Find $f\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)$.
(b) $[3 \mathrm{pt}]$ Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be a basis of \mathbb{R}^{3} and let $\mathcal{D}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ be a basis of \mathbb{R}^{2}. Suppose $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a homomorphism with $\operatorname{Rep}_{\mathcal{B}, \mathcal{D}}(g)=\left[\begin{array}{lll}2 & 0 & 0 \\ 1 & 9 & 0\end{array}\right]$. Find $g\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)$.
5. [5pt] Let $\mathcal{M}_{2 \times 2}$ be the space of all 2×2 matrices. Consider the matrix $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ and define the homomorphism $f: \mathcal{M}_{2 \times 2} \rightarrow \mathcal{M}_{2 \times 2}$ by $f(\mathbf{M})=$ $\mathbf{A M}$ for all $\mathbf{M} \in \mathcal{M}_{2 \times 2}$. Find a basis of the null space of f and a basis of the range of f. [If you use your answer from Problem 3, double check your answer to make sure it is correct.]
6. Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}3 \\ -1\end{array}\right]$. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be a basis of \mathbb{R}^{2} and let \mathcal{S}_{2} be the standard basis of \mathbb{R}^{2}.
(a) [2pt] Find $\operatorname{Rep}_{\mathcal{S}_{2}, \mathcal{B}}(\mathrm{id})$, the change of basis matrix from \mathcal{S}_{2} to \mathcal{B}.
(b) $[3 \mathrm{pt}]$ Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a homomorphism with $\operatorname{Rep}_{\mathcal{S}_{2}, \mathcal{S}_{2}}(f)=\left[\begin{array}{ll}1 & 3 \\ 3 & 9\end{array}\right]$. Find $\operatorname{Rep}_{\mathcal{B}, \mathcal{B}}(f)$.
7. [5pt] Let $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 5\end{array}\right]$. Find matrices \mathbf{P} and \mathbf{Q} such that

$$
\mathbf{P A Q}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
$$

8. [extra 2pt] Define a sequence by $a_{0}=6, a_{1}=13$, and

$$
a_{n}-5 a_{n-1}+6 a_{n-2}=0
$$

for all $n \geq 2$. Find a formula for a_{n}.
[Hints: First make an observation that

$$
\left[\begin{array}{c}
a_{n+1} \\
a_{n}
\end{array}\right]=\left[\begin{array}{cc}
5 & -6 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
a_{n} \\
a_{n-1}
\end{array}\right] .
$$

Then you may use the fact

$$
\left[\begin{array}{cc}
5 & -6 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]^{-1}
$$

to find the answer.]

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	2	
Total	$30(+2)$	

