國立中山大學	NATIONAL SUN YAT-SEN UNIVERSITY		
線性代數(二)	MATH 104 / GEA	IATH 104 / GEAI 1209: Linear Algebra II	
期末考	June 17, 2019	Final Examination	
姓名 Name :		_	
學號 Student ID $\#$:		_	
		Jephian Lin 林晉宏	
	Contents:	cover page,	
		9 pages of questions,	
		score page at the end	
	To be answered:	on the test paper	
	Duration:	110 minutes	
	Total points:	35 points $+$ 7 extra points	

Do not open this packet until instructed to do so.

Instructions:

- Enter your Name and Student ID # before you start.
- Using the calculator is not allowed (and not necessary) for this exam.
- Any work necessary to arrive at an answer must be shown on the examination paper. Marks will not be given for final answers that are not supported by appropriate work.
- Clearly indicate your final answer to each question either by underlining it or circling it. If multiple answers are shown then no marks will be awarded.
- 可用中文或英文作答

1. [5pt] Let $\mathcal{M}_{2\times 2}$ be the space of all 2×2 matrices. Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$ and define the homomorphism $f : \mathcal{M}_{2\times 2} \to \mathcal{M}_{2\times 2}$ by $f(\mathbf{M}) = \mathbf{A}\mathbf{M}$ for all $\mathbf{M} \in \mathcal{M}_{2\times 2}$. Find a basis of the null space of f.

2. Let \mathbf{L}_n be the $n \times n$ matrix whose i, j-entry is -2 if i = j, 1 if |i - j| = 1, and 0 otherwise. For example,

$$\mathbf{L}_{2} = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}, \mathbf{L}_{3} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}, \text{ and } \mathbf{L}_{4} = \begin{bmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

(a) [1pt] Compute $det(\mathbf{L}_n)$ for n = 2, 3.

(b) [2pt] Find a recurrence relation for $det(\mathbf{L}_n)$. For example, find a and b such that

 $\det(\mathbf{L}_n) = a \det(\mathbf{L}_{n-1}) + b \det(\mathbf{L}_{n-2}).$

(c) [2pt] Compute $det(\mathbf{L}_n)$ for n = 5, 10.

3. Let

$$m(x) = x^4 + 2x^3 + 5x^2 + 4x + 4.$$

- (a) [1pt] Find the derivative m'(x) of m(x).
- (b) [2pt] Find the Sylvester matrix $S_{m,m'}$ of m(x) and m'(x).

(c) [1pt] Recall that the resultant $\operatorname{Res}(m, m') = \det(S_{m,m'})$ is the determinant of the Sylvester matrix. Describe how to tell if m(x) and m'(x) have a common root in \mathbb{C} or not by the value of $\operatorname{Res}(m, m')$.

(d) [1pt] Describe how to tell if m(x) has a multiple root in \mathbb{C} or not by the value of $\operatorname{Res}(m, m')$.

4. [5pt] Diagonalize

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}.$$

or show that it is not diagonalizable. To diagonalized a matrix \mathbf{A} , you have to find an invertible matrix \mathbf{Q} and a diagonal matrix \mathbf{D} such that $\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \mathbf{D}$. (Note: For this problem, the eigenvalues are integers.)

5. [2pt] Is the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

diagonalizable or not diagonalizable? Justify your answer.

6. [3pt] Is the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

diagonalizable or not diagonalizable? Justify your answer.

- 7. [1pt] What is the definition of "matrix \mathbf{A} is similar to matrix \mathbf{B} "?
- 8. [1pt] Suppose A is invertible and $det(\mathbf{A}) \neq 0$ is known. How to obtain $det(\mathbf{A}^{-1})$ from $det(\mathbf{A})$?
- 9. [3pt] Show that similar matrices have the same characteristic polynomial.

- 10. [1pt] Describe the Cayley–Hamilton theorem.
- 11. [2pt] Show that the Cayley–Hamilton theorem is true for

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}.$$

12. [2pt] Suppose the Cayley–Hamilton theorem is true for diagonal matrices. Show that the Cayley–Hamilton theorem is true for any diagonalizable matrices. 13. [extra 5pt] Find the characteristic polynomial p(x) for the matrix $\mathbf{J}_n - \mathbf{I}_n$. Here \mathbf{J}_n is the $n \times n$ all-ones matrix and \mathbf{I}_n is the $n \times n$ identity matrix. 14. [extra 2pt] Find the minimal polynomial of the matrix

(You do not have to justify your answer.)

[END]

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	5	
8	5	
9	2	
Total	35 (+7)	