線性代數（二）MATH 104 ／GEAI 1209：Linear Algebra II
期末考
June 17， 2019
Final Examination

姓名 Name： \qquad
學號 Student ID \＃： \qquad

Lecturer：	Jephian Lin 林晉宏
Contents：	cover page，
	$\mathbf{9}$ pages of questions，
	score page at the end
To be answered：	on the test paper
Duration：	$\mathbf{1 1 0}$ minutes
Total points：	$\mathbf{3 5}$ points +7 extra points

Do not open this packet until instructed to do so．

Instructions：
－Enter your Name and Student ID \＃before you start．
－Using the calculator is not allowed（and not necessary）for this exam．
－Any work necessary to arrive at an answer must be shown on the ex－ amination paper．Marks will not be given for final answers that are not supported by appropriate work．
－Clearly indicate your final answer to each question either by underlining it or circling it．If multiple answers are shown then no marks will be awarded．
－可用中文或英文作答

1. [5pt] Let $\mathcal{M}_{2 \times 2}$ be the space of all 2×2 matrices. Consider the matrix $\mathbf{A}=\left[\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right]$ and define the homomorphism $f: \mathcal{M}_{2 \times 2} \rightarrow \mathcal{M}_{2 \times 2}$ by $f(\mathbf{M})=\mathbf{A M}$ for all $\mathbf{M} \in \mathcal{M}_{2 \times 2}$. Find a basis of the null space of f.
2. Let \mathbf{L}_{n} be the $n \times n$ matrix whose i, j-entry is -2 if $i=j, 1$ if $|i-j|=1$, and 0 otherwise. For example,
$\mathbf{L}_{2}=\left[\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right], \mathbf{L}_{3}=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2\end{array}\right]$, and $\mathbf{L}_{4}=\left[\begin{array}{cccc}-2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2\end{array}\right]$.
(a) $[1 \mathrm{pt}]$ Compute $\operatorname{det}\left(\mathbf{L}_{n}\right)$ for $n=2,3$.
(b) $[2 \mathrm{pt}]$ Find a recurrence relation for $\operatorname{det}\left(\mathbf{L}_{n}\right)$. For example, find a and b such that

$$
\operatorname{det}\left(\mathbf{L}_{n}\right)=a \operatorname{det}\left(\mathbf{L}_{n-1}\right)+b \operatorname{det}\left(\mathbf{L}_{n-2}\right)
$$

(c) $[2 \mathrm{pt}] \operatorname{Compute} \operatorname{det}\left(\mathbf{L}_{n}\right)$ for $n=5,10$.
3. Let

$$
m(x)=x^{4}+2 x^{3}+5 x^{2}+4 x+4
$$

(a) [1pt] Find the derivative $m^{\prime}(x)$ of $m(x)$.
(b) $[2 \mathrm{pt}]$ Find the Sylvester matrix $S_{m, m^{\prime}}$ of $m(x)$ and $m^{\prime}(x)$.
(c) $[1 \mathrm{pt}]$ Recall that the resultant $\operatorname{Res}\left(m, m^{\prime}\right)=\operatorname{det}\left(S_{m, m^{\prime}}\right)$ is the determinant of the Sylvester matrix. Describe how to tell if $m(x)$ and $m^{\prime}(x)$ have a common root in \mathbb{C} or not by the value of $\operatorname{Res}\left(m, m^{\prime}\right)$.
(d) $[1 \mathrm{pt}]$ Describe how to tell if $m(x)$ has a multiple root in \mathbb{C} or not by the value of $\operatorname{Res}\left(m, m^{\prime}\right)$.
4. [5pt] Diagonalize

$$
\mathbf{A}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

or show that it is not diagonalizable. To diagonalized a matrix \mathbf{A}, you have to find an invertible matrix \mathbf{Q} and a diagonal matrix \mathbf{D} such that $\mathbf{Q}^{-1} \mathbf{A Q}=\mathbf{D}$. (Note: For this problem, the eigenvalues are integers.)
5. [2pt] Is the matrix

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 2 & 3 & 4 \\
0 & 0 & 3 & 4 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

diagonalizable or not diagonalizable? Justify your answer.
6. [3pt] Is the matrix

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

diagonalizable or not diagonalizable? Justify your answer.
7. [1pt] What is the definition of "matrix \mathbf{A} is similar to matrix \mathbf{B} "?
8. [1pt] Suppose A is invertible and $\operatorname{det}(\mathbf{A}) \neq 0$ is known. How to obtain $\operatorname{det}\left(\mathbf{A}^{-1}\right)$ from $\operatorname{det}(\mathbf{A}) ?$
9. [3pt] Show that similar matrices have the same characteristic polynomial.
10. [1pt] Describe the Cayley-Hamilton theorem.
11. [2pt] Show that the Cayley-Hamilton theorem is true for

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

12. [2pt] Suppose the Cayley-Hamilton theorem is true for diagonal matrices. Show that the Cayley-Hamilton theorem is true for any diagonalizable matrices.
13. [extra 5pt] Find the characteristic polynomial $p(x)$ for the matrix $\mathbf{J}_{n}-\mathbf{I}_{n}$. Here \mathbf{J}_{n} is the $n \times n$ all-ones matrix and \mathbf{I}_{n} is the $n \times n$ identity matrix.
14. [extra 2pt] Find the minimal polynomial of the matrix

$$
\mathbf{A}=\left[\begin{array}{llllllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3
\end{array}\right]
$$

(You do not have to justify your answer.)

Page	Points	Score
1	5	
2	5	
3	5	
4	5	
5	5	
6	5	
7	5	
8	5	
9	2	
Total	$35(+7)$	

