\qquad
\qquad
Quiz 3

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 4 & 3 \\
0 & 1 & -3 \\
-1 & -1 & -11 \\
7 & 9 & 73
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
9 \\
-10 \\
-36 \\
238
\end{array}\right] .
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
4 \\
-1 \\
3
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=6$.
\qquad
\qquad

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 5 & -5 \\
4 & 21 & -25 \\
-5 & -27 & 36 \\
1 & 4 & 1
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
-14 \\
-55 \\
67 \\
-16
\end{array}\right] .
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
1 \\
-4 \\
-1
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=6$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．

姓名 Name： \qquad學號 Student ID \＃： \qquad
Quiz 3

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 0 \\
-1 & 4 & 6 \\
-5 & -15 & -13
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
1 \\
5 \\
19 \\
-77
\end{array}\right]
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{l}
5 \\
0 \\
4
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=9$.

Indicating your answer by underlining it or circling it．

姓名 Name： \qquad學號 Student ID \＃： \qquad
Quiz 3
MATH 103 ／GEAI 1215：Linear Algebra I

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & -4 & -1 \\
-5 & 21 & 1 \\
-16 & 67 & 5 \\
38 & -158 & -17
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
12 \\
-46 \\
-154 \\
384
\end{array}\right] .
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
0 \\
-2 \\
-4
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=4$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．

\qquad
\qquad
Quiz 3

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 3 & 3 \\
3 & 10 & 14 \\
5 & 15 & 16 \\
20 & 65 & 87
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
-8 \\
-28 \\
-40 \\
-180
\end{array}\right]
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
4 \\
-4 \\
0
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=0$.
\qquad
\qquad
Quiz 3

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 4 & 0 \\
-5 & -19 & -3 \\
-13 & -49 & -8 \\
-34 & -128 & -21
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
9 \\
-51 \\
-132 \\
-345
\end{array}\right] .
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
-3 \\
3 \\
3
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=3$.

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．

姓名 Name： \qquad學號 Student ID \＃： \qquad
Quiz 3

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & -4 & 2 \\
0 & 1 & -5 \\
-1 & 4 & -1 \\
-4 & 11 & 16
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
13 \\
0 \\
-14 \\
-51
\end{array}\right] .
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{l}
-5 \\
-5 \\
-1
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=9$.

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad
\qquad
Quiz 3

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 5 & -4 \\
-5 & -24 & 22 \\
12 & 57 & -53 \\
-5 & -23 & 24
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
11 \\
-61 \\
147 \\
-67
\end{array}\right] .
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
-1 \\
0 \\
-3
\end{array}\right]
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=6$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．

姓名 Name： \qquad學號 Student ID \＃： \qquad
Quiz 3 MATH 103 ／GEAI 1215：Linear Algebra I

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & -1 & -4 \\
-5 & 6 & 24 \\
25 & -30 & -119 \\
24 & -28 & -111
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
-12 \\
67 \\
-333 \\
-314
\end{array}\right] .
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
-5 \\
-1 \\
2
\end{array}\right]
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=6$ ．

Indicating your answer by underlining it or circling it．

姓名 Name： \qquad學號 Student ID \＃： \qquad
Quiz 3
MATH 103 ／GEAI 1215：Linear Algebra I

Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & -1 & 1 \\
3 & -2 & 0 \\
-8 & 4 & 5 \\
18 & -10 & -8
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
-3 \\
-19 \\
69 \\
-144
\end{array}\right]
$$

Suppose β is the basis formed by the columns of \mathbf{A} ．Find $\operatorname{Repr}_{\beta}(\mathbf{b})$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10$

Solution．

Solve the system of linear equations $\mathbf{A x}=\mathbf{b}$ ，using Gaussian elimination or any method you like．The answer is

$$
\operatorname{Repr}_{\beta}(\mathbf{b})=\mathbf{x}=\left[\begin{array}{c}
-3 \\
5 \\
5
\end{array}\right] .
$$

Check code $=\left(\right.$ sum of all entries of $\left.\operatorname{Repr}_{\beta}(\mathbf{b})\right) \bmod 10=7$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
check code

