\qquad
\qquad

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
2 \\
-5
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
7 \\
11 \\
-23
\end{array}\right], \text { and } \mathbf{v}_{4}=\left[\begin{array}{c}
3 \\
6 \\
-15
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & 4 & 3 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 3 －th column．
Therefore，$k=3$ and $\left[\mathbf{v}_{k}=\left[\begin{array}{c}7 \\ 11 \\ -23\end{array}\right]\right.$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=5$ ．
check code
5
\qquad
\qquad

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
4 \\
11
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
5 \\
20 \\
55
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-5 \\
-20 \\
-55
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
-5 \\
-19 \\
-53
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 5 & -5 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 2－th column．
Therefore，$k=2$ and $\left[\mathbf{v}_{k}=\left[\begin{array}{c}5 \\ 20 \\ 55\end{array}\right]\right.$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=0$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad
\qquad

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-5 \\
19
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-5 \\
26 \\
-98
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-5 \\
26 \\
-98
\end{array}\right], \text { and } \mathbf{v}_{4}=\left[\begin{array}{c}
-6 \\
31 \\
-117
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 3 －th column．
Therefore，$k=3$ and $\mathbf{v}_{k}=\left[\begin{array}{c}-5 \\ 26 \\ -98\end{array}\right]$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=3$ ．
\qquad學號 Student ID \＃： \qquad

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
5 \\
18
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
-4 \\
-15
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
0 \\
-4 \\
-12
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
4 \\
15 \\
57
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & -4 & -1 \\
0 & 1 & -4 & -5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 3 －th column．
Therefore，$k=3$ and $\mathbf{v}_{k}=\left[\begin{array}{c}0 \\ -4 \\ -12\end{array}\right]$
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=4$ ．

Indicating your answer by underlining it or circling it．
\qquad
\qquad

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
5 \\
-5
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
3 \\
15 \\
-15
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
3 \\
16 \\
-15
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
18 \\
95 \\
-90
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{llll}
1 & 3 & 0 & 3 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 2 －th column．
Therefore，$k=2$ and $\mathbf{v}_{k}=\left[\begin{array}{c}3 \\ 15 \\ -15\end{array}\right]$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=3$ ．
\qquad
\qquad

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-5 \\
2
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
4 \\
-20 \\
8
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
-3 \\
16 \\
-6
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{llll}
1 & 4 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 2－th column．
Therefore，$k=2$ and $\left[\mathbf{v}_{k}=\left[\begin{array}{c}4 \\ -20 \\ 8\end{array}\right]\right.$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=2$ ．
\qquad
\qquad

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-5 \\
25
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
6 \\
-30
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
-10 \\
50
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
2 \\
-10 \\
50
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & -4 & 2 \\
0 & 1 & -5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 3 －th column．
Therefore，$k=3$ and $\mathbf{v}_{k}=\left[\begin{array}{c}1 \\ -10 \\ 50\end{array}\right]$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=1$ ．

\qquad
\qquad

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
5 \\
7
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-3 \\
-14 \\
-19
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
-1 \\
-3 \\
-3
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
11 \\
50 \\
67
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & 5 & -4 \\
0 & 1 & 2 & -5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 3 －th column．
Therefore，$k=3$ and $\mathbf{v}_{k}=\left[\begin{array}{l}-1 \\ -3 \\ -3\end{array}\right]$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=3$ ．

Indicating your answer by underlining it or circling it．
\qquad
\qquad

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
-4
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
-5 \\
1 \\
-25
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
-24 \\
4 \\
-116
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & -1 & 0 & -4 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 2－th column．
Therefore，$k=2$ and $\left[\mathbf{v}_{k}=\left[\begin{array}{c}-1 \\ 0 \\ -4\end{array}\right]\right.$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=5$ ．
\qquad學號 Student ID \＃： \qquad

Let

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
4 \\
-14
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
-4 \\
14
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
3 \\
13 \\
-46
\end{array}\right] \text {, and } \mathbf{v}_{4}=\left[\begin{array}{c}
-8 \\
-35 \\
124
\end{array}\right] .
$$

Find the vector \mathbf{v}_{k} with the smallest k such that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ is linearly independent but $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent．

Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10$

Solution．

Let \mathbf{A} be the matrix whose columns are $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}\right\}$ ．The reduced echelon form of \mathbf{A} is

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and the first free variable occurs on the 2 －th column．
Therefore，$k=2$ and $\mathbf{v}_{k}=\left[\begin{array}{c}-1 \\ -4 \\ 14\end{array}\right]$ ．
Check code $=\left(\right.$ sum of all entries of $\left.\mathbf{v}_{k}\right) \bmod 10=9$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
check code
9

