\qquad
\qquad

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -1 & 7 & 3 \\
2 & -1 & 11 & 6 \\
-5 & 1 & -23 & -15
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \text { and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=1$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to \mathbf{A} to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & 4 & 3 \\
0 & 1 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{3}, x_{4} ．
By setting $x_{3}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{1}=\left[\begin{array}{c}
-4 \\
3 \\
1 \\
0
\end{array}\right] .
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{1}\right) \bmod 10=0$.

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．

check code

\qquad
\qquad

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 5 & -5 & -5 \\
4 & 20 & -20 & -19 \\
11 & 55 & -55 & -53
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text {, and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=1$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to \mathbf{A} to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 5 & -5 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{2}, x_{3} ．
By setting $x_{2}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{1}=\left[\begin{array}{c}
-5 \\
1 \\
0 \\
0
\end{array}\right] .
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{1}\right) \bmod 10=6$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
check code
\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 103 ／GEAI 1215：Linear Algebra I

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -5 & -5 & -6 \\
-5 & 26 & 26 & 31 \\
19 & -98 & -98 & -117
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \text { and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=1$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to \mathbf{A} to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{3}, x_{4} ．
By setting $x_{3}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{1}=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right] .
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{1}\right) \bmod 10=0$.

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．

\qquad
\qquad

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -1 & 0 & 4 \\
5 & -4 & -4 & 15 \\
18 & -15 & -12 & 57
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text {, and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=1$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to \mathbf{A} to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & -4 & -1 \\
0 & 1 & -4 & -5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{3}, x_{4} ．
By setting $x_{3}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{1}=\left[\begin{array}{l}
4 \\
4 \\
1 \\
0
\end{array}\right]
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{1}\right) \bmod 10=9$.

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．

check code
 9

\qquad
\qquad

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 3 & 3 & 18 \\
5 & 15 & 16 & 95 \\
-5 & -15 & -15 & -90
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text {, and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=2$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to \mathbf{A} to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{llll}
1 & 3 & 0 & 3 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{2}, x_{4} ．
By setting $x_{4}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{2}=\left[\begin{array}{c}
-3 \\
0 \\
-5 \\
1
\end{array}\right] .
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{2}\right) \bmod 10=3$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
check code
3
\qquad
\qquad

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 4 & 0 & -3 \\
-5 & -20 & 0 & 16 \\
2 & 8 & 0 & -6
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \text { and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=2$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to \mathbf{A} to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{llll}
1 & 4 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{2}, x_{3} ．
By setting $x_{3}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{2}\right) \bmod 10=1$. Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad學號 Student ID \＃： \qquad
Quiz 1
MATH 103 ／GEAI 1215：Linear Algebra I

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -1 & 1 & 2 \\
-5 & 6 & -10 & -10 \\
25 & -30 & 50 & 50
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text {, and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=1$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to \mathbf{A} to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & -4 & 2 \\
0 & 1 & -5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{3}, x_{4} ．
By setting $x_{3}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{1}=\left[\begin{array}{l}
4 \\
5 \\
1 \\
0
\end{array}\right]
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{1}\right) \bmod 10=0$.

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad
\qquad

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -3 & -1 & 11 \\
5 & -14 & -3 & 50 \\
7 & -19 & -3 & 67
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text {, and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=1$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to \mathbf{A} to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & 5 & -4 \\
0 & 1 & 2 & -5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{3}, x_{4} ．
By setting $x_{3}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{1}=\left[\begin{array}{c}
-5 \\
-2 \\
1 \\
0
\end{array}\right] .
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{1}\right) \bmod 10=4$ ．

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．
\qquad
\qquad

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -1 & -5 & -24 \\
0 & 0 & 1 & 4 \\
4 & -4 & -25 & -116
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text {, and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=2$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to \mathbf{A} to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & -1 & 0 & -4 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{2}, x_{4} ．
By setting $x_{4}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{2}=\left[\begin{array}{c}
4 \\
0 \\
-4 \\
1
\end{array}\right] .
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{2}\right) \bmod 10=1$.

Indicating your answer by underlining it or circling it． Compute the check code and fill it into the box on the right．

\qquad
\qquad

Consider the equation $\mathbf{A x}=\mathbf{0}$ ，where

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & -1 & 3 & -8 \\
4 & -4 & 13 & -35 \\
-14 & 14 & -46 & 124
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text {, and } \mathbf{0}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Compute the reduced echelon form \mathbf{R} of \mathbf{A} to get the free variables．Let $k=2$ ． Find a solution $\mathbf{x}=\boldsymbol{\beta}_{k}$ by setting the k－th free variable as 1 while the other free variables as 0 ．

Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{k}\right) \bmod 10$

Solution．

Apply Gaussian elimination to \mathbf{A} to get its reduced echelon form

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The free variables are x_{2}, x_{4} ．
By setting $x_{4}=1$ and all other free variables as 0 ，one may solve for

$$
\boldsymbol{\beta}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
3 \\
1
\end{array}\right] .
$$

as the answer．
Check code $=\left(\right.$ sum of all entries of $\left.\boldsymbol{\beta}_{2}\right) \bmod 10=3$ ．

